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Philosophy of this Workshop

Focus on Concepts

An Overview of
Spatial Statistics Define Terminology

lllustrate using Graphics

Bryan Vinyard Avoid excessively Technical Explanations

Biometrical Consulting Service _—

USDA, ARS, Beltsville Apply the Concepts to Data

Focus on ‘What?’ & ‘Why?’ not ‘How?’
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Observed Data ( ‘disorder ?

N

“Statistics, the science of uncertainty,
attempts to model order in disorder.”

Cressie (1991)
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Characteristics of Interest ‘Y’
measured at each observed data point

Primary Goal of Applied Statistics

Examples: Use observed Y values
Stream Flow together with scientific knowledge
Yield A
Muscle Tissue Toughness to obtain accurate predictions ( Y')
CY3, CY5 Image Reflectance of unobserved Y values
Insect Damage Rating or to understand a process
Bacteria Count (i.e., test the effects of a treatment)
Nitrate Flux . o
Turbidity by creating a statistical model:
Y-
Notes Initial Attempt to Predict Y

Fitting a statistical model to data can be viewed as a process of identifying
a sequence of “filters” through which the observed data are “sifted”.
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Model the ‘Large-Scale’ Trend

where
Y is predicted by fitting a ‘large-scale’ trend to the observed data.

€" isdata variability remaining after the model is fit.
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Notes

Refine the Model to Predict Y

When modeling a characteristic of interest, Y, there are typically well
established large-scale relationships between Y and one or more
fixed-effect “covariates” (i.e., regressors) and/or random “block”
effects.

These large-scale effects are modeled first so that the remaining
(i.e., residual) variability can be examined in detail on a small-scale
to model any spatial dependencies that may be present.
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Model ‘Small-Scale’ Variability

T o T e 8*

Correlated
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Independent

10

Notes

Refine the Model to Predict Y
Model ‘Small-Scale’ Variability

The initial “filters” capture the large-scale relationships, letting the small-
scale relationships remain in the “residual” data to be modeled by a small-
scale filter.

Accurate modeling of the small-scale variability, composing the residual
data, often requires identification of an appropriate correlation (i.e,
covariance) structure.
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Notes

The presence of small-scale dependencies often means that
there is correlation among data values located within a certain
distance or proximity to one another.

Making use of this “common information” shared by correlated
data values improves a model’s accuracy.

The primary goal of modeling small-scale dependencies is the
identification of an appropriate correlation (i.e., covariance)
structure.
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Decomposing the Data Variability
ANOVA Terminology

Small-Scale

All ‘residual’ variation

Large-Scale

(eg., a raindrop on water surface)

Fixed Effects Random Effects’

Means Variance Component
Deterministic Functions Variances

Regressors(Covariates) Covariances/Correlations
Treatments

*Some models may include large-scale random effects (i.e., blocks)
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The General Linear Model (GLM)
Perspectives on Model Components

Y = Large-Scale + Small-Scale
Variation Variation

Y = Fixed Effects + Random Effects*

Y = Mean &/or + Variances &
Covariates Covariances*

Yn><1 = anp'Bpx1 + €nxi

Yn><1 = Hixi + Enxt

Yn><1 = ynx1 + Enxt

*Some models include random effects (i.e.,blocks) that are considered “large-scale”.
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Notes

Traditional (General Linear) models typically use only the large-scale effects
to model the process; by either predicting Y at various values of regressors
or for a collection of experimental “treatments” (i.e., fixed-effects). In
traditional GLMs, the small-scale effects do not contribute to improving
predictability of Y; rather they are used as precision measures (i.e., root
mean-square error) to test hypotheses for the fixed-effects.

Spatial models examine small-scale effects more closely and use the
information shared among correlated data values to improve predictability of
Y.
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The General Linear Model (GLM)
Assumptlons — the i.i.d. Mantra

Observed Data - Model Prediction =  Model Error
Yoxi - 9nx1 = Enxd
Classical GLM assumptions: ¢, are i.i.d.

€;,~Normal ( 0, 02,)
+ independent — no correlation among the n residual values.
« identically distributed
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Small-Scale Variation

Variances & Covariances that Describe Model Error

For ¢, ii.d.

: o
no correlation among 6
the n data values %,=0 1,4 .
Z . is a diagonal matrix... 0
When the ¢, are correlated,
2
correlations appear as % On
2

non-zero ‘covariances’ in X .= N
the off-diagonals of Z,,, ... -
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Xn

€ Jnxn

Notes: The Covariance Matrix

To assist in the visualization of how n observed data points are correlated
with one another, statisticians use an n x n “covariance” matrix, denoted as
ann

The element in row i and column j of Z _ is the “covariance” between data
observation i and data observation j. This covariance is typically denoted
as o;

ij

Correlation, p, is defined to be a standardized covariance, p =

O'"
By definition, when o;; = 0, observation /and data observation jase
independent (i.e., not correlated, p = 0).

By definition, a covariance matrix, Z ., is symmetric about the main
(northwest to southeast) diagonal because 0= 0,

Covariances on the main diagonal are more commonly referred to as
variances, o, = o7 (for data observation i).
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General Spatial Model

Focus is on modeling Small-Scale Variability

when there is dependence or correlation
among observed residual values.

Correlation
implies
X . is not diagonal O Op
621 622
Enxn = .
Gnl GnZ
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nn. Jnxn
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Notes

The key to successfully modeling the small-scale variance for spatially-
correlated data is to accurately identify the relationship between the
proximity or distance among data points and their correlation to one
another.
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General Spatial Model
Terminology

D is the spatial domain or area of interest
s; notates the spatial coordinates

Zis a characteristic of interest measured or
observed at the spatial coordinates
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Notes

We make a shift in notation here from that used by the traditional general linear
model to that used by spatial models.

Characteristic of Interest:
Y for traditional general linear models
Z(s)
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for spatial models; s denotes the location of the measurement.

Spatial Auto-Correlation
A Definition

A measure’s correlation with itself relative to proximity/location.

Data values observed at n locations are auto-correlated
when values Z(s;) and Z(s;) in close proximity to one another |s;-s;| < h
are more alike than values located at a further distance [s;-s;| > h.

Cov(h)
A
As the distance, h, ’
increases between 2 data ’
observations, s, and s;, 2
the correlation between Z(s) .
and Z(s)) decreases.
’ 8 a 1 2 & 4 L3 B
Distance = h
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Semivariance — A Statistic
for Measuring Autocorrelation

Semivariance Formula:

V(s S, ) = e Var[z(si) — (s, )]

= { Var[Z(s)] + Var(Z(s,)]
-2:CoV[Z(s),Z(s;)] }

J
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Notes: Semivariance

Semivariance is a statistic and a function that facilitates examining the
relationship between the covariance (i.e., correlation) between the
characteristic of interest, Z, and the locations where it was measured, s;
ands.

J

The “Auto-Correlation Definition” slide, above, clearly exhibits decreased
covariance (and correlation) with increased distance between s; and s,

We will see in a few subsequent slides (“Required Assumptions for
Modeling Spatial Data”) that under the assumptions of “stationarity”, only
the distance between observed data points is important to allow accurate
estimation of the semivariance (and hence, covariance and correlation).
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Semivariogram — A Tool
for Measuring Autocorrelation

Notes: Semivariogram

y(h)2

5

b calcos e

Opartial sin [

D e e et

7(h)/2 £ semi-variance

8 Nugget
Practical Range

0 1 2 3 4 5 &
Distance = h
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A semivariogram, upon initial consideration, may not be as intuitively
interpretable as the covariance plot on the “Spatial Auto-Correlation” slide
above.

Most readily, a semivariogram provides the Practical Range, h*, which
indicates the distance between any two points in the observed process
beyond which those two points are independent of one another (i.e., not
correlated).

Also, for any distance (h=s;-s; ), Cov[Z(s)), Z(s))] = Cov[h] = sill - y(h)/2.
The component parts of a semivariogram can be interpreted as:

, = Var[Z(s,)]

sill = 02 +0

nugget partial sill
where 0, g iS the portion of Var[Z(s;)] due to variation in Z
02ugget 1S the portion of Var[Z(s;)] due to measurement error
or small-scale variation in the process
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Effective Sample Size
in Presence of Autocorrelation

“...positive autocorrelation

results in ‘loss of 100
information’.
80
p— n('()rr ) (1 B p)
ne}‘fe('tive -
. (1+p) 0
Nt p=0
M gteciive = UNcorrelated %0 7-02
(independent) samples o
n,. = correlated (dependent) 20 7706
samples ==T35
2‘0 ' 4‘0 ‘ 6’0‘ ‘ 80 ‘ ‘100
where 0 is autocorrelation n
with0<p <1.
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Notes

The more strongly spatial data are correlated, the less “unique” information
is provided by each individual observed data point.

Information shared by data points in closer proximity can improve the ability
to accurately model the characteristic of interest, Z.

Simultaneously, strongly correlated data points can reduce the statistical
power of inferences (i.e., hypothesis tests).

The effective sample size formula (on the previous slide) results from the
assumption (Cressie 1991, p.14-15) that
Cov[Z(s)),Z(s))] = o*-plsi=sil

or equivalently Covlh] = 02:p"  where h=[s;-s|
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Notes

The below table illustrates how correlated data contains less unique
information than independent data. For example, if two data points are
located at a distance from one another that causes them to have a
correlation of p=0.2, observing n_,,,data points provides information
equivalent to the amount provided by two-thirds fewer independent (i.e.,
uncorrelated data points.

P neﬁective
0 Reorr
0.2 %n,
0.5 Yon,
0.8 1/9n,
1 0
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Autocorrelation Influences
Statistical Inference

X1 — X2
Zindep= . 2
n
X1 - x2
Zcorr= 0'-\/2'(1+p)
n-(l-p)

If positive autocorrelation is present
and ignored, a treatment effect can
be incorrectly declared significant.

Divisor: 1 for z, 4., By - te=0

n for Z

effective corr
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Notes

Example:

On the previous slide, a hypothesis test for the equality of 2 treatment
means has a divisor of n when the data values for the 2 treatments were
independently replicated (i.e., not correlated). In this case, the test statistic
Z,4ep > Za- o5 @nd there is sufficient evidence to reject H, and declare a
significant difference between the treatment means.

However, if the data values observed for the 2 treatments are correlated
with one another, the divisor for the test statistic, z_,., is = 1-P)

» =corr? effective 1+p)

which is smaller than the divisor in the independent case.

Hence, z.,, < z,_s SO there is an insufficient amount of data (i.e., statistical
power) to reject H,.
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Spatial Data

has no independent replications
consists of a single n-dimensional observation:
{Z(sy),...., Z(s,) } at locations s,,...,s,
estimates dependency, }, via semivariance:y(si,sj)
using:
1) the observed { Z(s,),...., Z(s,) }
and 2)distances, h, between thes,,...,s,

predicts Z(s,) at an unobserved location, s, using the
observed { Z(s,),...., Z(s,) } and the estimated

semivariance=y(S;,S)
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Required Assumptions
for Modeling Spatial Data

Stationary Process

Constant Mean: Z(s,)=p foralls;in D

Covariance is function of distance (h=ss)),
NOT location (' s; ):

Cov(s;-s) NOT Cov(s)
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Notes

The validity of all statistical models requires that the data meet some basic
assumptions. Typical spatial models require that the data possess
characteristics of a “Stationary Process”, as defined on the previous slide.

If the data do not represent a stationary process, the fitted spatial model will
produce incorrect predictions and/or inferences.

Spatial models require that the characteristic of interest, Z, have a constant
mean value over the entire domain. This can typically be achieved by
modeling the large-scale effects and use the residual variability as the
spatial data to which a spatial model is fit.
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Required Assumptions for Spatial
Data Modeling

The water level of
a calm pond
during
a light rain shower
is an example

of a stationary
process:

Photo “Raindrops on the Pond”
by Mark Schretlen 11-May-2003

March 15, 2006 An Overview of Spatial Statistics - Vinyard
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Notes

The water level on the surface of a pond in a light rain shower is a natural
phenomenon that illustrates a stationary process:

1. The average water level is constant over the entire pond surface

2. The water level within a radius from the point where the rain drop strikes
the surface depends on the water level at all other locations within that
radius. Since the intensity of rain is similar across the entire surface of the
pond, the correlation of water levels within the radius is the same
regardless of where the rain drop hits the surface of the pond and the
strength of correlation within the radius depends only upon the distance
from the raindrops point of impact.
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Definition: Kriging

Predict unobserved z(s,) as a weighted average of the
observed z(s,),...,z(s,) spatially-correlated data

> and h (i.e., distance) determine the kriging weights

assigned to each of the observed z(s,),...,z(s,) in the

kriged estimate, Z(s,)

The term Kriging was coined by G. Matheron(1963) in
honor of South African mining engineer D.G. Krige,
whose work (1951) laid preliminary groundwork for
the field of “geostatistics”.

March 15, 2006 An Overview of Spatial Statistics - Vinyard
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Semivariance determines Kriging Weights
Range=20, Sill=10, Nugget=0
Kriged Estimate, 7(s, ), at s, = (x=12,y=30) is 65.7

2 (s, ) is a weighted average of the observed z(s)). The weights sum to 1.
Each point on the graph is sized proportionately to its weight.

50

Semivariogram: {h)=10{1- 2™
40 z=80 Range=20, Sill=10, Nugget=0
12
A Zls,)=65.7 =
s L ) S L N
30 o oty
LA :
g5 F N ™ o 2280 ¥(h) Ahizi=semvariance
20 i \ T TRe [
=100 @ "’*‘3}5\ \
z=50 E 5
1 \ ., 2 Practical Range
A a
0 @z=70 a 10 20 30 40
0 10 20 30 40 h
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Notes

The previous and next several slides use Isaaks’ and Srivastava’s (1989,
pp. 291, 301-307) small data set of seven observations and one prediction
location to examine the effect of semivariogram parameter on ordinary
kriging predictions. This example was also given as Example 5.5 in
Schabenberger & Gotway (2005).

The only difference between the previous and the next semivariogram is
the range. The larger practical range in the previous slide causes greater
“short-distance” correlations, which results in greater heterogeneity in the
weights used to obtain the kriged estimate.
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Practical Range Changes from 20 to 10
Kriged Estimate, Z(s, ), at s, = (x=12,y=30)
Changes from 65.7 to 68.4

50
Semivariogram: ¥ (h)=10(1- ™)
z=90 Range=10, Sill=10, Nugget=0
40 q
12
~
% 51:69_4_. z=60 1o S|
Y3° q, RE5
,;\’L)J J’ \\ \:“'\ (h)B % (hi2}=semivariance
R g5, \\\ ~~o_ z=80 »i 5
20{ & 1 3 Bge
z=100 @ Pl 4
\ A
=500 i 5 2 | practical|Range
10 \\ L ] &)
\ z=40 0
\ Q 10 20 30 40
4 92-70 h
0 10 20 30 40
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Nugget changes from 0 to 5
Kriged Estimate, Z (s, ), at s, = (x=12,y=30)
Changes from 65.7 to 67.8

Notes

50
Semivariogram: ¥ {h)=5+5(1- ™"
Range=20, Sill=10, Nugget=5
z=90
40 4 @ 12
3 2(5 )=67.8 @ =60 oS S
30 4 T
Y q, M3 8
I/,\"l,)/ ;’ \\ \‘*H\‘-. }’(h) v (h/2)=semivariance
‘;’/ ¥ oA \\.\ Ty 2e80 6 .
20 1 £ & i )
=100 @ N Al 4
z=50 \\ W \\\ 2 Practical Range
10 + % . o
5 = 0 10 20 30 40
z=70 h
0 ‘ y
0 10 20 30 40
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Introduction of a nugget effect yields more homogeneous kriging weights,
similar to the kriging weights resulting from the doubling of the practical
range.
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Sill Doubles from 10 to 20
Kriged Estimate, Z (s, ), at s, = (x=12,y=30)
Remains Unchanged at 65.7

50 Semivariogram: ¥ {n}=20(1- &*"*")
Range=20, Sill=20, Nugget=0
z=80
40 A . 5
\ oA
30 W\ Ze)65T g z=60 PYg I I
SN
Y \'1:}/ i
RN W S 15 o
20 L \\\ M g ¥(h) vihiz)=semivariance
z=100 @@ \ /Jaas\ 10
z=50 PR
10 ¥ . 5
\\ z=40 Practi
i ractical Range
i ®z=70 0
0 =2 3 40 ¢ " 2 % 4
h
X
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Notes

Compared to the first kriged estimate that used an exponential
semivariogram with Range=20, Sill=10, Nugget=0; the previous slide used
an exponential semivarigram with Sill=20. Doubling of the sill did not
change the kriging weights at all. The larger sill caused only a larger the
kriging variance (i.e., variance of Z(s))

March 15, 2006 An Overview of Spatial Statistics - Vinyard 46

Direction in Spatial Modeling

Isotrophy — autocorrelation is equivalent in all directions
Anisotrophy — autocorrelation is direction dependent.

Hortheast-SoLthwast
North-South

| R N

SIh2=semisgnancs
»thezimsarlivaraies

:
B
2 2 =ract zal Rangs
ractica Re-ol
a S o -
o 10 20 3 4 c o ] an A
h h
Northwest-Southeast East-Wost
12 12
an 0
W —— oo ————————————— N
N ] ]
- semiuar ance
iy rih)
(] (]
i S
1 :
2] |Pagical Ranzs 2 |f PrgticallRange
ol LR
¢ 13 2 il 0 [ -0 20 an 40
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Note

If distance correlations change depending on direction, the appropriate
semivariogram for the spatial model also changes with direction. In this
case, direction must be considered when fitting the model.
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3 Types of Spatial Models

Geostatistical / Point-referenced

Lattice / Areal

Point-Process / Point-Pattern
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Notes

The majority of the information presented thusfar most readily lends itself to
geostatistical data. However, the general concepts apply (with appropriate
adjustments or modifications) to all 3 types of spatial models.
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Geostatistical / Point-referenced Models

Specific locations s,...,s in the
domain D are selected.

The characteristic of interest,
z(s,),-.,Z(s,), is observed.

Example: Six fields, each planted in a
different soybean cultivar.
Locations s;,...,s, are n individual
soybean plants.
2(sy),...,2(s,,) are protein
concentration of the plant’s yield.

Crop Science 42:804-815 (2002), A. N. Kravchenko
and D. G. Bullock
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Notes

The figures on the right of the previous slide illustrate how kriging can
produce prediction maps.
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Lattice / Areal Models

Hazardous Waste Site Installations (1997)

Specific locations s, ,...,s,
represent ‘contiguous
areas’ in the domain D.
The characteristic of
interest, z(s,),...,z(s,), is
observed for each ‘area’.

Example: # of hazardous
waste sites in each U.S.
state.

GMPCHO

SAS/Graph Online Documentation — Proc GMAP
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Notes

Lattice or Areal models have the objective of predicting Z(s) where s is an
“area” rather than a “point”, as in the Geostatistical/point-referenced model
case.
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Two Methods of Modeling Lattice Data

Simultaneously Autoregessive
Likelihood methodology

Conditionally Autoregressive
Gibbs sampling (Bayesian) methodology

Schabenberger & Gotway (2005) pg.7
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Point-Pattern Models

Objective:

Model the ‘process’ that %
generated the spatial data. ..

02

06

02 04 08 OB 10

Fig a) completely random pattern
Fig b) Poisson cluster process

Fig c) process with sequential
inhibition regularity

DO 02 04 06 08 10

Schabenberger & Gotway (2005), p. 82
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Point-Pattern Data
Example 1: A Marked Process

Distribution of hickory(c) and maple trees(#).

Separate Plots

Overlaid

- B
o @% - e Y )
%a":'f 1yt e B | 00 e
oo Ny G :‘::q: Ju'{::éJ L —

on 04 @2 04 08 08 10 00 02 04 06 08 10
08 02 o4 08 08 10 * b

Schabenberger & Gotway (2005), p.119,121
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Notes

The “mark” in this marked process is whether the species of tree is hickory or
maple.
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Point-Pattern Data
Example 2: Lightning Strikes

Lightning strikes within 200 miles of the &
U.S. east coast April 17-20, 2003. e W

Schabenberger & Gotway (2005) p.13 | y x%

Kriged predictions can
also be obtained for
point-pattern data, as
shown by the NASA
map of global
lightning strikes.
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Summary of the 3 Model Types

A desktop is the domain D of locations s,
Experiment — pour sand on the desktop.

Analogy:

Geostatistical & Lattice Data:

locations s; do not change from one pouring
(i.e., experiment) to the next

z(s;)= observed sand depth varies at s,

Point-Pattern:
specify a sand depth of interest
observe all locations s; in D where sand has this depth.

Schabenberger & Gotway (2005)
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Data Measured at Multiple Scales

“Even when the disorder is discovered to have
a perfectly rational explanation at one scale,
there is very often a smaller scale where the
data do not fit the theory exactly, and the
need arises to investigate the new, residual
uncertainty.”

Cressie (1991)
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Hierarchical Models

Estimate ‘parameters’ of an experiment using
the observed data z(s,),...,z(s,)

Assume and impose statistical distributions on
the parameters to be estimated
distribution choices rely on theory and/or scientific
knowledge
modeling of distributions uses Bayesian methods
GEOBUGS freeware
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Differing World Views
iIn Modeling

Deterministic vs Stochastic

Mary J. Camp

Biometrical Consulting Service
USDA, ARS, Beltsville

Begin at the Beginning

e  Observation — a record obtained by an act of recognizing and noting a fact
or occurrence often the outcomes of an experiment, investigation, or
survey and measuring with instruments.

o  Data — a collection of observations. Factual information (as
measurements) used as a basis for reasoning, discussion, or calculation.

° What to do with data? Investigate how it came about, what caused it,
manipulate conditions to produce it, use it to make predictions.

e  To do the above to data usually means — Model It

World Views in Modeling

How data is modeled and the purpose of modeling will depend on the
modeler’s world view.

Deterministic Model (Functional Model)
Stochastic Model (Statistical Model)

Classical Statistical Model (General Linear Model)
— actually a subset of the Stochastic Model

Classical Statistical Modeling

®  An observation is thought of as being composed of three parts: a part due
to the average of all observations in the population, a part due to
manipulation, the level of an applied factor(s), i.e., a treatment(s), and a
part due the unique properties of that particular observation in the
population

Yi=Hp+T+¢
o Rearranging shows that the deviation of an observation from the overall

mean is then due to the effect of its factor level, the treatment effect, and
its other properties, the error

Yij_U=Tj+€ij
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Assumptions of the Model

®  The observations are independent. Measuring or observing one does not

Example 1: High Tunnel Tomato Yield

affect the measurement or observation of another.
CV1 CV3 CVv4 Cv2
®  The erroris a sample from a probability distribution. Often in modeling this
is a normal distribution, also known as the bell-shaped curve.
Cv2 CVv4 CV3 CcV1
®  The errors for the observations come from the same probability
distribution.
CV3 Cv2 CcV1 CVv4
Cultivar
Plot 1 2 3 4 Observation Decomposition
Y
1 12 14 19 24
30 Yot
2 18 12 17 30 :
3 — 13 21 — z.
Total walll
Total 30 39 57 54 180
Mean 15 13 19 27 18 22
Number of Plots 2 3 3 2 10 P
53
18 : =18
An observation, the yield for a plot, is viewed as being composed of the average = i
yield of tomatoes in the high tunnel plus an effect due to the cultivar on the plot : T
and an effect due to the individual differences intrinsic to each plot. 14 S 2
Yo i
—_ . ) 10 4
cvi cv2 cv3 cv4
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Determining if Treatment is Important

° For each observation the square of the distance of the estimated treatment
effect from the estimated overall mean is calculated. In the above plot
would be squaring and summing the solid green lines. The sum of these
distances is known as the sum of squares treatment.

®  The squared distance of the each observation from the estimated
treatment effect is calculated. In the above plot this would be squaring and
summing the dotted red lines. The sum of these distances is known as the
sum of squares error.

®  We look at a ratio of the average sum of squares treatment and the
average sum of squares error.

° If the ratio is large enough, then we judge that the treatment has an
important effect in understanding the differences between the means of
the treatment levels.

High Tunnel Tomato Yield Analysis

° The average sum of squares treatment, i.e., the cultivar effect: 258/3 = 86
®  The average sum of squares error, i.e., the mean square error: 46/6 = 7.67

° The ratio is: 86/7.67 = 11.21

o Under the assumptions of the model and that the probability distribution for
the error is the normal distribution, 11.21 is large enough. The probability
of obtaining a ratio this large if the average cultivar yields were not
different is only .007. The conclusion is that the cultivar is important in
explaining the differences in the average tomato yields.

Cultivar 1 Cultivar 2 Cultivar 3 Cultivar 4
Average Yield 15 13 19 27

Deterministic (Functional) Model

e  Mathematical function(s) is used to model a process, usually chemical or
physical.

e  Observations or predictions are the results of how the inputs interact in the
process.

®  The model can be very complex however the more complex the model the
more inputs, parameters, and terms are needed for prediction.

®  The model is only as good as the science used to make it. Assumes the
process is understood and the data for it can be collected.

® By changing any of the inputs, any of the values of the parameters, new
predictions and “What if?” questions can be asked.

Example 2: Return on an Investment

F=P(1+r/m)m
Where:

F = Future value

P = Present value,

r = Annual rate,

m = Periods/Year,

Y = number of Years

5-Year Return on $1000 at Federal Funds Rate, June 2004 — January 2006

Rate  Return Rate  Return Rate  Return Rate  Return
1.25 1064.46 225 1118.95 3.25 1176.19 425 1236.30
1.50 1077.83 2.50 1133.00 3.50 1190.94 450 1251.80
1.75 1091.37 275 1147.22 3.75 1205.88
2.00 1105.08 3.00 1161.62 4.00 1221.00
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Example 3: Verhulst-Pearl Logistic Growth

N,., = N, + rN(1 + N/K)

Where:

N, is the population size at time t,
r is the growth rate of the population,

K is the carrying capacity of the habitat

Time till Exceed Carrying Capacity
Initial Population: 1200 Carrying Capacity: 2400

2600

2400 l," 77777777777777 — Constant K
2200

2000

Population

1800 Growth Rate

1%
2%
3%
5%
8%

1600

1400

1200

Year

Stochastic (Statistical) Model

®  Uses mathematical function(s) to model a process.

®  Atleast one model parameter is a random variable described by a
probability distribution.

e  Ability to reproduce and predict observations are based on patterns of
previous data, not necessarily the underlying physical or chemical
processes.

° Some view these models as ‘black-box’ models.

Example 4: Verhulst-Pearl Logistic Growth

Nis = Np+ rN(T + N/Ky)

Where:

The carrying capacity at time t, Kf(t), is the initial carrying capacity multiplied by a

random variable, p. Kf(t) = K,p

Inyears 1,4,5,8,9,12... p has an equal chance of taking any value between
0.85 and 0.95.

In years 2,3,6,7,10,11... p has an equal chance of taking any value between
0.95and 1.25

Mathematically this is

{0.85 < p < 0.95 uniformly distributed whent= 1,4,5,8,9,12...
0.95 < p < 1.25 uniformly distributed when t= 2,3,6,7,10,11...
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Carrying Capacity and Growth as a Function of Time
Initial Population: 1200

Initial Carrying Capacity: 2400

Example 5: Number of Marriage Licenses

3000 " In an attempt to model the number of marriage licenses issued in
] i ' March from 38 randomly selected county courthouses, a linear
SRR i regression model was used.
2600 | i K for 1% Growth
] rd The input variables were:
2400 t Constant K
S _ { Income = average household income in the county.
§ 2200 o Liquor = number of liquor stores within a 10 block radius of the
g i courthouse.
2000 Rain = rainfall in inches for the county in March.
1 Robins = number of robins reported in the county’s March bird survey.
1800 TV = average number of television sets per household in the county.
7 EoriBitie Worship = number of houses of worship within a 3 mile radius of the
1500 — courthouse.
’ — 3%
1400
1200 Result
s 10 voon 30 ¥ 40 Marriage Licenses = 108.90 + 4.63(Robins)
Scatter Plot 1 Scatter Plot 2
1500 . . 1500 = &
- - =
L ° b
] - ks 3 4 .
o b . L ) -
— » - ®
2 1000 g : = - @ 1000 . - N
8 s ¥ & 5 1 ¥ ”
5 . e & . 5 L ¢ .
] . . ] . - =
o * - = . -
g : .
2 500 . . 2 500 “
- -
L] - = -
a T 5 T i T T T L T 0 T T 4 T ! T L T 4 T
4 6 8 10 12 10000 20000 30000 40000 50000 60000
Number of Houses of Worship Income
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Scatter Plot 3

Scatter Plot 4

deterministic element.

1500 -| " * 1500 ”
* - L
- = L) -
§ pe L] * B E c: .
2 1000 -| i " " = 1000 .
g . . g L
= - - = L]
S . e © . o &
= - - = -
5 g -, 5 S
E * - : E - . - ®
g T :
Z 500 5 2 500 « °
- -
L] % -
a T T T T T T T 0 T T T T T T T T T T T T T
i 1 2 3 4 5 50 100 150 200 250 300 350
Rainfall Number of Robins
Comparing Models - Stochastic madel witherr
Q=/£(PIQ)+vVv
s . N Q is the observation based on a function, f(-), P is the inputs, for the
° rl:r)ue)tdeerlmr:gstrlr?o?jne? es:s)ihgsrt;%g)ﬁepl:rltmk the same when the deterministic model parameters, Q, and v is the model error.
¢ Deterministic model with error ®  f(P|Q) is the deterministic component and v is the stochastic part.
Q=£(PIQ) +e
. . . ®  The model error occurs because the model is based on mathematical
g;z;:‘igrgﬁgz:?n()ba:;deoir; ?hfeurr]r?(t)lggi Jefdr(r.())’r of the process P, for the function(s), measurement error and unexplained variability.
. R . . ® |n the stochastic model the deterministic element, £.(P|Q), is derived
* /(PIQ)is the deterministic component and ¢ is the stochastic part. to insure reproduction of characteristics of Q without regard to
. . s . underlying physical processes.
®  The model error can occur either through mis-specifying the model, i.e., ying phy P
leaving out factors that explain the process, or measurement error.
®  Goal is usually to minimize e by some means and focus on the
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®  The Stochastic model's weakness is that it is does not necessarily
represent observed internal physical laws or processes. Consequentially,
the model may not be useful in understanding how the observations occur.

®  The Deterministic model’s weakness is that it can not reproduce the
variance of observed model outputs. As long as the model residuals
(observed value - predicted value) are independent of the model inputs

Var[Q] = Varl[f,(P|Q)] + Var[e]

it will always hold that Var[f;(P|Q)] < Var[Q] , unless Var[e] = 0 which
means there is no model error.

Relationship to Spatial Modeling

Spatial models comprise two sources of variation:
Large Scale Variation (modeling the mean structure) and
Small Scale Variation (modeling the covariance structure).

Large Scale Variation = Trend
o Involves the entire region of the study or experiment area.
e  All points are used equally to predict an observation.

o In a deterministic model this would be the functional part that describes a
process, e.g., modeling how fast water flows down a slope.

o In a stochastic (statistical) model this would be the treatments in an
analysis of variance, independent variables in a regression, blocks.

Small Scale Variation

®  Once large scale variation has been removed, only neighboring points are
used to estimate a nearby observation.

e  Observations are viewed as being correlated. Observations close together
are more correlated than observations further apart. As observations
become further apart a distance is reached where the correlation is
negligible.

® A perfect deterministic model would have no small scale variation. That
these models do have small scale variation is largely a matter of
measurement error.

° A statistical model will have small scale variation, since the model is based
on mathematical functions and proxy variables that do not fully explain the
process, plus it will have measurement error.

ome physiologists will have it that the

stomach is a mill; --others, that it is a

fermenting vat;--others again that it is a
stew-pan;--but in my view of the matter, it is
neither a mill, a fermenting vat, nor a stew-
pan--but a stomach, gentlemen, a stomach.

William Hunter 1718-1783
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An Introduction to Statistical

Models for Spatial Data in Ecology

By
Jay M. Ver Hoef
National Marine Mammal Lab
7600 Sand Point Way, NE
Seattle, WA 98115

jay.verhoef@noaa.gov

What do Statisticians Do?

Statistic

.

Inference

x-values

Data

e e e

3.5,04.5.33,1

2.

What is a Model?

What does it look

like? How does it work?

Reality || DataModel | Scientific Model | Probability Model

| | 1
| Representational : Functional : Lack of Fit
| What does it look || How does it work? || What don't we

’ /p‘f } 4 ! like? I | understand?

Y it 1

... Modeling Modeling Modeling

- ¢ Points : v

¥

Representational

Functional

o ."
of
Polygons
\\Inference Inference
T I

1
1
1
1
! -
1
1
1
1
1
1

“All models are wrong. We make tentative assumptions about the real world
which we know are false but which we believe may be useful.”- George Box 1976

4
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® D is the spatial domain
° or area of interest

o« o ® s contains the spatial
coordinates

o ® Z is a value located at
o the spatial coordinates

Types of Spatial Data

o Z(8)

{Z(s):se D}
® Geostatistical Data: Z
random; D fixed, infinite,
continuous
® Lattice Data: Z random; D
fixed, finite, (ir)regular grid

® Point Pattern Data: Z=1;
D random, finite

Examples of Geostatistical Data

Average Snow Depth

Ozone Predictions

AN A
=4 2 =
= A //:§g\ =
T AN
N %/W/\/\@/)j \\W}/{ﬁ)
N \\%a@ké/

—h N

SNOW DEPTH (CM)

Examples of Lattice Data

Transformed SIDS rates

Plots in a Designed
Experiment

2|12
1“

A

2|3
1
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Examples of Point Patterns

Lansing Woods Hickory Arctic Caribou Calving
Locations Locations

Statistical Models

Linear Model
Z

( observed ] = XB e VaI'(S) — 2“(e)
unobserved

|
|
|
|
|
|
|
|
|
|
2 it
observe 1
= g(X,¢g,0)

Zunobserved J

|
Prediction ' Estimation

j Nonlinear Model
|

Five Meanings of
Autocorrelation

® Description of data

® Property of a stochastic process
® Model for a stochastic process
® Statistic

® Function in Fourier analysis

Four Meanings of Autocorrelation

¥ =Byt Pix; +e;, var(e) = o’l ¥, =Py +Bx +e, var(g) =X

=] Independent Errors r
N
.

Autocorrelated Errors LY
a

|Autocorrelated Data Hﬁ[ 2
den

Autocorrelation Model

3

12

DDDDDDDD

27




Autocorrelation Models Autocorrelation
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B3 Microsoft Excel - Introduction to Geostatistical Analysis.xls.
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Fits vs. Prediction

Z
( observed J - XB +e, Var(g) = E(B)
unobserved

o |Independent Errors Autocorrelated Errors -
8 L3

Fit = Prediction Fit
Variances different in both cases 17

Prediction

Estimation and Prediction

observed

=XP +¢&, var(e) =2(0)

( Z unobserved \ /

Predlctlon Estimation
e Mapping * Regression
e Sampling » Designed Experiments

18

Why Do We Need
Autocorrelation Models?

Z
( o j =XB +¢, var(e) =X(0)
unobserved

Oy - (T om0
0-21 0-22 0-21
O-nl O-n2 O-nn

40 80
Distance h

Leave it to the Statisticians!

® Weighted Least Squares

® Generalized Least Squares

® Maximum Likelihood

® Restricted Maximum Likelihood

® Bayes (Markov Chain Monte Carlo MCMC)

Z
( o j =XB +¢, var(e) = Z(0)
unobserved

20
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Pitfalls: Valid Autocorrelation

Linear-With-Sill Correlation

.
0 2 8 10

4 6
Distance
—

00 02 04 06 08 10

Models

00 02 04 06 08 10

Circular Correlation

0

Spherical Correlation

00 02 04 06 08 1.0

4 6 10
Distance

Exponential Correlation

00 02 04 06 08 1.0

qe
0 2 8 10

4 6
Distance

4 6
Distance
=

21

Stream

0.000000 - 5.804205
5.804206 - 6.150356
6.150357 - 6.919956
6.919957 - 9.383346
9.383347 - 13.00000

Network Models

S0, Concentration

Pitfalls: Valid Models for

Stream Networks

Ty

Minimum Eigenvalue

0.8

0.4

-0.4

0.0
1

=mm cxponential
=== spherical
linear-w-sill

Not to scale. All lengths =1

2 4 6 8 10
Range Parameter

23

( Zobserved \1
KZ unobserved )

Prediction Map

= XP +¢, var(e) =X(0)

Standard Error Map

24
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Mapping - Quantiles

Quantile Maps

)]
3

15 1
Q ]
‘a‘ 1 Standard * > 0.95 Quantile:
—_— 101 E 95% of the area
'_6 rror of the curve is
] below this value.
Q |
Q
—
o

0 T T T T
0.009 0.059 0.109 Mf)g 0.209
True Value

0.05 Quantile Map ‘ ‘ Prediction Map ‘

| 0.95 Quantite Map

W G125373 - 0745244
I 0145344 - 0373600

Probability Maps

@
8

Prediction = 0.080
Prob = 0.123

»
S

Probability Density

yaal

0.010 0.060 0.110 0.160 0.210
True Value

Probability Density
3

True Value

Prediction = 0.114

n l Prob = 0.624

0
0.010 0.060 0.110 0.160 0.210

Prediction = 0.091

@
8

N

8
N
3

Prediction = 0.114

Prob = 0.582

Prob = 0.080

>

Probability Density

Probability Density

o o

0010 0060 0.110 0.160 0.210
True Value

0.010 0.060 0.110 0.160 0.210

True Value
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® Whiptail Lizard
® 148 locations in Southern
California

® Measured the average
number caught in traps
over 80 — 90 trapping
events in one year

® Data log-transformed, one
outlier removed

California Arizona
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Whiptail Lizard Example

® There were 37 explanatory variables in 5
broad categories: vegetation layers,
vegetation types, topographic position, soil
types, and ant abundance

California Lizard Data
(ZZ"'”"W jzfXIEI+ g, var(g) = );(0)

Histogram of raw data

unobserved

*Ant abundance
*Percent sandy soil

*Spherical autocorrelation *
eIsotropic 5o
Estimation: REML £
followed by GLS

® 49053 to -4.4023
® 44023 1o -3.8992
-3.8992 10 -3.3962
-3.3962 10 -2.8931

s 2 +
log(Hyper) abundance

28931 10 -2.3001 Boxplot of raw data

-2.3901 to -1.887
-1.887 o -1.3839
-1.3839 10 -0.8809
-0.8809 10 -0.3778.

* 0377810 0.1251

log(Hyper) abundance
3 2

30

Exploratory Data Analysis on

Residuals
Studentized Residual :

z— 4,
NVMSE(—h,)

Histogram of studentized residuals

HED XXX pXens

Boxplot of studentized residuals

Frequency
3

log(Hyper) abundance

4 2 0 2

log(Hyper) abundance

31

Model Diagnostics

Based on deleting observations

CooksD
8-

* Likelihood Distance
* Cook’s D and Leverage

Frequency

® Covariance Trace 7

Mostly for outlier detection
(Zobserved—l) 7 XB + &, Var(S) 7 2(9)

32
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Frequency

Histogram of studentized residuals

2
L

Remove Outlier and Re-fit

Lizard Data

Boxplot of studentized residuals

log(Hyper) abundance

CooksD

1 o 1
log(Hyper) abundance

Frequency
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Cross-validation

Cross-validation Scatter Plot

Predicted Value

Measured Value

34

Semivanogram

Isotropy vs.

Anisotropy

35

Cross-validation

Standardized Bias:
l < (2i_zi)
n's | var(Z,)

Root Mean Squared Prediction Error :

et
nZ(z z;)

Prediction Interval Coverage :

S ool
=1 |y var(Z,)

[zobs@ZM‘""] = XP +¢, var(e) =X(0)

4
eSpherical autocorrelation
eIsotropic

Standardized Bias
RMSPE

80% Coverage
90% Coverage
95% Coverage

eSpherical autocorrelation
eAnisotropic
Standardized Bias

RMSPE

80% Coverage

90% Coverage
959% Coverage
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Model Selection Model Selection

e AIC )

A e i L | Variogram | Anis.| AIC RMSPE 95%PI
i | Spherical

e BIC (Penalty for number of parameters) X m 398.86 0.874 95.3%

= Exponential No | 398.62 0.873] 95.3%

o | Spherical | Yes | 394.68 0.841 96.0%

Choose the model with the Minimum of these: | Exponential Yes | 394.67 0.834 95.3%

Be careful! Some software uses
2*loglikelihood — (Penalty for number of parameters),
in which case you choose the maximum.

Can also use RMSPE and other criteria. Why not?

37 38

Spatial Regression

Final Fitted Model References

7 ® Ver Hoef, J.M. 1993. Universal kriging for ecological data. Pages
ceticopm it XP +e¢, var(e) = X(0) 447 — 453 in Goodchild, M.F., Parks, B., and Steyaert, L.T. (eds.)
Environmental Modeling with GIS, Oxford University Press, 488 p.

unobserved

F_’artial Sill 0. ® Ver Hoef, J.M., Cressie, N., Fisher, R.N., and Case, T.J. 2001.
Major Range Uncertainty and spatial linear models for ecological data. Pages 214 —

Minor",;'ff;: 237 in Hunsaker, C.T., Goodchild, MLF.. Friedl, M/A., and Case, T.J.

Rotation . (eds.), Spatial Uncertainty for Ecology: Implications for Remote

Sensing and GIS Applications Springer-Verlag.
| effect | estimate| std.err | df | tvalue| prob.t | j
mmmm -7.984 | <0.00001 ® Maier, J.A.K., Ver Hoef, J.M., McGuire, A.D., Bowyer, R.T.,
A“t Abund % :"; gg; g ggggi Saperstein, L. and Maier, H.A. 2006. Distribution and density of

moose in relation to landscape characteristics: Effects of scale. In

press, Canadian Journal of Forest Research.
39 40

34




Glades in Ozarks

Glades in Ozarks

24 24
25 22 22

True

Contrast Value
= _ -4.00

23 21 21 20 6 =(7+7)2-7
B e=(7+7)/2-7 6.00
o, =(7+7)/2-(7+7)/2 1000
25 23 24 24 e, =(7—7) 2.00
e =( ) 0.00

N
|
o

Treatment
1 0
2 -3
3 =5
4 +6
S +6
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Estimation and Prediction

observed

=XP +¢&, var(e) =2X(0)

Z<Observed \ /

Prediction Estimation
e Mapping * Regression
e Sampling * Designed Experiments
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Linear Models

Z(s)=7,+&(s;) or z=X|E+8 E(e)=0

Covariance Models

var(g) = 0’1 Independence Models
var(¢)=X  Geostatistical Models
Exponential, Spherical, etc.
var(¢) =X  Lattice Models
CAR, SAR, etc.

45

Estimating Treatment Effects

Freq Freq Bayes Bayes Bayes
True OoLs OoLs Geo Geo Freq Lat Freq Lat Geo Geo Lat Bayes
Contrast Value Est se Est se Est se Est se Est Lat se
¢ =(r,+1)/2+7 -4.00 -2.40 1.29 -2.95 0.87 -2.94 0.90 -2.65 1.12 -2.76 1.07
¢, =(r,+7)/2+7 6.00 6.60 1.29 6.81 1.05 6.81 1.02 6.72 1.18 6.81 1.12
¢, =(7,+73)/ 2+ (7, +75)/2 10.00 9.00 1.05 9.77 0.84 9.75 0.86 9.37 0.89 9.57 0.98
¢, =(r,-13) 2.00 0.40 1.49 0.53 1.07 0.71 1.16 0.42 1.47 0.71 1.38
¢ =(z, —75) 0.00 -2.40 1.49 -1.94 1.68 -2.29 1.60 -1.96 1.86 -2.44 1.63
nugget  0.00 0.07 0.70 1.44 0.87 1.88
parsil 13.54 21.22 10.96 10.78 21.74 11.70 5.94
TreD 3.73 6.54 0.90 2.66 6.71 0.64 0.25
24 24 24
25 22 22 23
23 21 21 20 24
%] 2 (28] 2 2
25 23 24 24
46

Desighed Experiment
Experiment

24 24 24 N
Fue
25 22 22 23 Contrast Value
— _ -4.00
23 21 21 20 a=(n+7)2-7
. . e, =(7+7)2-7 LY
23 22 %\e c,=(7+7)/2-(7+7)/2 |10.00
25 23 24 24 @6“& ¢, =(%—7) 2.00
e, =(7—7) 0.00
Treatment Effect
1 0
2 =3
3 -5
4 +6
5 +6
47

Desighed Experiment Results

GLS- Spatial ML  Spatial REML
ANOVA Variogram Estimation Estimation
C1 1.810 1.166 1.103 1.037
Cz 1.822 1.183 1.105 1.040
MSE C3 1.139 0.766 0.724 0.687
C4 2.364 1.546 1.457 1.380
Cs 2433 1.608 1.591 1.461
C1 0.9450 0.9440 0.9300% 0.9505
Cz 0.9495 0.941% 0.9240% 0.9500
Coverage | C3 0.9575 0.9495 0.9365% 0.9560
C4 0.9500 0.9390% 0.9250% 0.9490
Cs 0.9435 0.9385* 0.9215* 0.9465
C1 0.8253 0.9750 0.9845 0.9825
Cz 0.9960 1.0000 1.0000 1.0000
Power C3 1.0000 1.0000 1.0000 1.0000
C4 0.2155 0.3370 0.4095 0.3560
Cs 0.0565 0.0615 _ 0.0535
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Desighed Experiments

Spatial Sampling
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Source of Randomness

Fixed Pattern, Random Pattern,
Random Samples Fixed Samples :
40 oo Fixed Pattern, Random Samples I

20 z2(x) = sin( B, x) +a, ,sin( B,,x) +
g 0 a,,c08(f,x) + &, ,co8( B, x) + &, (exp(x) —1)

0.0 0.2 0.4x0.6 08 1.0 00 0.2 o.4xo.s 08 1.0 Random Pattern, Fixed Samples'
40 40

2(x) =pz(x, )+ €(x); &(x,)~N(@O,0°)

20

value
value

00 02 04 06 08 1.0 00 02 04 06 08 1.0 51 52
X X
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Sampling and Geostatistics

Infinite Population Parameters

Continuous)

Method
Classical Sampling Geostatistics
Infinite (Spatially | Classical Sampling T

Methods

Finite (Spatially
Discrete)

Population

Classical Sampling
Methods

Finite Population
Block Kriging

53

Total Mean
.A z(s)ds /A

Z
chrened | — XPB+¢g, var(e) = 2(0)

54

Simulation Study

Simulation Results

Fixed Pattern, Random Samples

55

Table 1. Comparison of random sampling and block kriging. 1000 random
samples were generated from a fixed continuous spatial pattern. Sample sizes
were 100. For block kriging, an isotropic exponential covariance model was
estimated from the sample data using REML.

Validation
Statistics SRS! BK?
Bias 0.002 -0.020
RMSPE? 1.28 1.02
RAEWV 1.29 1.00
80%CP 0.813 0.806
1 Simple Random Sampling
2 Block Kriging

* root mean squared prediction errors
4 root average estimated variance
* 80% confidence interval coverage

56
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Sampling for Finite Populations Finite Population Parameters

Method
Classical Sampling Geostatistics

Infinite (Spatially | Classical Sampling

Continuous) Methods Block Kriging

Finite (Spatially Classical Sampling Finite Population
Discrete) Methods Block Kriging

Population

Z observed

=XP+¢, var(e) =X(0)

57 58

Simulation Study Simulation Results

201 12 6 11 8 111210 9 10 11 Table 2. Comparison of Random Sampling and Finite Population Block Kriging.
:g :g 190 :;" : : :; ‘7‘ 191 g 1000 random samples were generated for the fixed spatial pattemn given by the
DI RIEGMmBRE O & i species diversity data. Sample sizes were 100. For FPBK, an isotropic
111110 9 9 10 121212 10 Fixed exponential covariance model was estimated from the sample data using REML.
151 9 8 910911 9 9 10 11
111313111011 10 9 9 11 1 Validation
Number Of 111112128 9 7 11 7 10 Populatlon’ Staﬁstics SRSl FPBKQ
l 8 1110111010 8 11 9 9 N_ZOO
p ant 9 1212121111 131111 8 = Bias -0.002 -0.001
A 4 > 10] 111011 8 1012128 8 9
species in e el RMSPE? 0.121 0.106
81110 9 9 1112111210 R d RAEV 0.122 0.105
70 x70 cm RS Bk apom 80%CT* 0.802 0.806
8108 8 9 10131210 10
5] 8105 6 6 11111210 12 Sam le 1 Simple Random Samplin,
plOtS ; 190 ; ; ; : : 170 190 : s f 0 0’ £ Finife Population BIOI():k Ig_ﬁging
127'8 7 5.9 6411011 n = ? root mean squared prediction errors
189127 67381M 4 root average estimated variance
g 0 5 10 5 80% confidence interval coverage

X 59
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Simulation Study Simulation Results

Table 3. Comparison of Random Sampling and Finite Population Block Kriging.
1000 patterns were generated using a spatially autocorrelated stochastic process,
and fixed and random samples were taken. Sample sizes were 50. For FPBK, an

51 0 0000000000000 0 51 000000000000000 ‘ ; ; A . :
000000000°00000 000000 00000000 isotropic exponential covariance model was estimated from the sample data using
000000000000000 000000000000000 REML.
0000°0°00000000 000000000000000 —
©00000¢00000000 000000000000000 Validation

] 000000000000000 1 000000000000000 Statistics SRS FPBKr ¥PBKf
000000000000000 000000000000000 Bias 0.522 -0.181 0.127

- Q900000000 c00000 | - oooeoo.oooooao: i , y A
000000000000000 0000000000000 RMSPE 28.0 20.7 17.3
000000000000000 000000000000000 RAEV? 28.0 20.3 17.5

1 000000000000000 1 000000000000000 80%CT° 0.801 0.791 0.796

0000000000000 0 000000000000000 T Qe Random Sammlin
0000900000000 000000000000000 imple Random Sampling
0000000 ce000 000000000000000 2 Finite Population Block Kriging from random sample
000000000000 000000000000000 3 Finite Population Block Kriging from fixed sample
0 T 0 T T T

4 root mean squared prediction errors
% root average estimated variance

4 % 80% confidence interval coverage 4

T T
0 5 10 15 0 5 10 15
X X

Conducting the Survey

649 “Highs,”

52 Sampled

338 “Lows,”
34 Sampled
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Conducting the Survey
‘ N ) \ ¢
72N

Y94, GarminGPSMAP295 4,
is Miller, Caribou Air Service

Modeling Covariance

High Stratum Low Stratum
3
aley ®
® £
§ 3 /'/'."r.— g 2
g e 8
£ £
8 3
0 10 20 30 40 50 g 0 10 20 30 40 50

Distance (km) Distance (km)

Small Area Total Area
FPBK FPBK
t=1437 t=11327
se(t) =153 se(t) =978
SRS (13H, 4L) i SRS
£ =1535 £=11535
se(t) =227 se(t) =985

67

o Geostatistical Methods for Sampling are
often more precise

o Geostatistical Methods for Sampling
allow small area estimation

o Geostatistical Methods for Sampling do
not require randomized designs

o Geostatistical Methods require modeling




Geostatistics and Sampling

Good Science is a Team Effort
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“All models are wrong. We make tentative assumptions about the real world

which we know are false but which we believe may be useful.”- George Box 1976 0




Why Include Spatial Dependencies?

Mark Otto

U.S. Fish and Wildlife Service

15 March 2006

Statistical Models

Biased Estimates of Standard Errors

Geostatistical Spatial Models

Lattice Models

Experimental Design

2006-03-07

Why Include Spatial Dependencies?
I_Outline

| want to start with the concepts of some basic statistical models.
Concepts you are familiar with. Then, | want to build and apply them to
models used on correlated data. I'll start with repetition and 11D, extend
it to regression models and transformation. We can then see how
transformations are also used to handle correlations data taken over time
and space. Finally, | will talk about the benefits and difficulties of
correlated data in mapping and prediction, regression, and experimental
design.

Statistical Models

v

Variable data
Consistent patterns:

> Parameter estimates
» Fitted values
» Predictions

v

v

Repetition

v

Model assumptions

43
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Statistical Models

Why Include Spatial Dependencies?
I—Statistical Models

I—Statistical Models

In statistics, we collect variable data that we hope to pull out consistent
patterns from. Probability distributions were made to characterize
common forms of variability: binomial, and multinomial for categorical
data, Poisson data for counts, and with all data no matter what the
distribution has estimates the approximate a normal distribution. To
extract those patterns, they must repeat in the data many times. In
practice we don’t know what processes generated the data, so we have to
pay attention to the assumptions of the models that we are using and
check that the data do not deviate greatly from them

Data from a Normal

Histogram of rnorm(nobs)

Density

morminiobs)

2006-03-07

Data from a Normal

Why Include Spatial Dependencies?
I—Statistical Models

I—Data from a Normal

Here are 29 values from a standard distribution, the mean is 0 and the
variance is 1. The histogram is of the data, the black line is from
standard normal the sample was generated from. The blue line is the
normal curve with mean and variance estimated from the sample data.
The estimated curve is a reasonable approximation.

Independent, Identically Distributed

» lIdentically Distributed: each observation is sample from the
same distribution

» Independent: One observation does not give information
about preceding or succeeding draws
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Independent, Identically Distributed

Why Include Spatial Dependencies?
I—Statistical Models

|—Independent, Identically Distributed

IID is one of the most basic assumptions we make for statistical
modeling. In term of the covariance independence means no correlation
among observations.

Regression

» Mean allowed to vary

» Variance constant

in

2006-03-07

Regression

Why Include Spatial Dependencies?
I—Statistical Models

L Regression

The first order effects vary, but the relation between the independent
variables is constant, y = X/3. The variance or second order effects are
constant, lo?. Their is repetition in the data: repetition around a varying
mean according to a constant variance. Each observation gives
information about (3, that relates y to X. The residuals, the data after
removing the mean function, are N(0, o2).

Relation of Mean to Variance

Transformations: when the variance becomes a function of the

mean
Log log(y) for count data
Inverse y1

Square root ()
Box-Cox (y — DA
Arc-sine arcsin \/p
Logit log(p/(1 - p)

percentages 0-20 or 80-100
above three are special cases
proportions

19
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Relation of Mean to Variance

Why Include Spatial Dependencies?
I—Statistical Models

I—Relation of Mean to Variance

ogt teg(p(1 =)

2006-03-07

For data that does not fit the usual assumptions, we can build more
flexible and complex models or we can transform the data back to
something that fits the usual assumptions. Here we transform to remove
the relation between the mean and variance. Back to IID and a constant
variance.

Time Series

Simplified spatial data
» Both correlated data
» One dimension: time
» Usually sampled regularly: daily, monthly, annually
» Order to observations: past, present, future

11

Time Series

» Independence?

» Past holds information on present or future
» “Near” observations more closely related
>

Do not expect IID

1R

2006-03-07

Time Series

Why Include Spatial Dependencies?
I—Statistical Models

I—Time Series

Very reason take measurements periodically is to look for the patterns
over time. Look for trends and periodicities. If we did not would not plot
the data, just take the information react to it and throw it away.

46




Data over time

Why Include Spatial Dependencies? ° )

Data over time gl I—Statistical Models
Interior (1-7) ) :
8 g I—Data over time ) [
S :
3 - 13 g
o -
g o Here we have mallard counts in Alaska. The observations are not
s 7 . X . .
. independent. Overall the series rises over time. On small scales the
o | deviations are similar. We no longer have IID and do not expect it.
e - T T T T T
1960 1970 1980 1990 2000
Tundra (8—11)
8 -
3 -
g 81
s
g g
*7 M
o 4
T T T T T
inen . s inn17 annn
. . Why Include Spatial Dependencies? fime Seres
Tlme Sel‘leS gl I—Statistical Models
o
o
O I—Time Series
(=)
o
(q\]
o Time series analysis is the characterization of the correlations as a
» Trends: variation that does not repeat over the length of the

series

Periodicities: variation that do repeat within the series, such
as seasonally

Regression: variation that changes according to known outside
variables

Autocorrelation: variation dependent on past data values

10

function of time lag
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Where is the Repetition?

» Each observation depends on the observations that came
before

» Observation at each time point could be a regression on its
past

» Repetitions are of the variation between observations a given
number of time lags apart

21

Stationarity

Everything is relative.
» Strong: distribution is the same regardless of where

» Weak: Mean and covariance are the same regardless of
position

» Dependence of the data on its past does not change with the
mean or with time

29

Stationarity

Why Include Spatial Dependencies?
I—Statistical Models

|—Stationarity

2006-03-07

This is a similar situation to the variance being dependent on the mean.
Here the autocovariances do not depend on the mean or time. Whether
you care about the temporal or spatial effects or not, when working with
correlated data, you need to pay attention to the assumptions of the
model. The consequences are that your analysis may not make sense (or
appear reasonable but be wrong).

Time Series Model Description

» Statistical model: current observation is related to past,

Ye = @Qyi—1+a; or
Yt fai—1+ a;

» Errors are |ID
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Time Series Model Description

Why Include Spatial Dependencies?
I—Statistical Models

I—Time Series Model Description e 0

Looks like regression but on the series itself, (independent variables are
fixed and without error)??? Data are multivariate normal, with a variance
as a function of the time series parameters, say ¢ and or ¢

y ~ N(fixed effects + trend + periodicities, V(¢, #))

If we knew the time series parameters this would be generalized least
squares (GLM, not GLIM)

Startin’ Up

» Auto-regressive model of order p
P
Yr = Z Giye—i + at
i=1

» What about the p observations?

Yi=P1ye 1+ Qoye o+ + Gpyep+ ar

» Two choices of models: conditional or exact

» Conditional: estimate given the first p values
» Exact: estimate the whole series jointly. Like making the best
starting values given the data.

IR

2006-03-07

Startin’ Up

Why Include Spatial Dependencies?

> Ao rgrasie model of order p

I—Statistical Models

=Yy it a

I—Star‘tin’ Up

There is no data for y;_p, ..., ¥;—1. Before PCs these were “complex”
computations, this was an issue. In fact the first solution was to run the
series backwards, forecast the first p values then use them in the original

series. The transformation in the next slide will show the exact approach.

Transform Back to IID

Regression residuals, y — X3 have mean y and general variance
V = [v;j] We can split the variance matrix into two parts like we
take the square root

a2 = V(o?) o

Vv = L L’
Vit - Vin hi -~ 0 hi - ha

Vin - Van lln /nn 0 /nn

7Q
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Transform to Back ID

Why Include Spatial Dependencies?

Transform to Back 11D 5 L graristical Models e
o : l"lvixﬂlwm )
o RO -
g I—Transform to Back IID S
S x
(g
We can then transform thel data ar}d regression variables in a way We transformed data and regression back to [ID Just make new variables
to make the errors [ID, L™"y — L7*X/3 Do the same to the that are linear combinations of data and regression variables,
variance, ) ) new y; = > :_, hiyi. They are combinations of past data. The new
L7 (Y — XpB) ~ N(0,10%) variables are approximately transformed back to |ID The identification,
New variable a combination of past values estimation, and diagnostics are more complicated, but the concepts are
the same.
t
new y; = Z liyi.
i=1
20
White Noise AR(1) rho=0.5 MA(1) theta=0.5 1st Difference Why Include Spatial Dependencies?
E = ~ | ..
o o o4 - = Statistical Models
4 7 b = [0}
=7 =7 =] =] : g
- T T N (=)
& 5 3 o = | g
T T T T T T T T T T T T T T T T T T ! T T T T T T
020 60 100 020 E0 100 0 20 &) 100 O 20 B0 100
This shows four time series: white noise, autoregressive order 1 where
=x . . . .
- | = S - adjacent time points data are correlated and moving average 1 where the
S 11 || it 5 ] |‘|“““““| ity = adjacent errors are correlated and a first differenced series where the
o -‘ | | H | "= "'|| |||'--' = i "||| 1 il o] “‘“‘H changes between one time point and the last are random.
- - _ ul = . . .
B e e . Ml ae s e e e S NI [y Rows of plots are: (1)the series; (2) the autocorrelations (ACF), which
g i 2 9 i & 9 11 9 10 95 23 are correlations between observations a given number of time lags apart;
N Z = @ | (3) the partial autocorrelations (PACF), like partial correlation
214 # ___________ :{ __________ oA coefficients. Auto-regressive-moving-average (ARIMA) models are
= | T T = Bl NE_TE ] -||||'I|I eyt o —— identified using these functions. AR models by the significant ACFs, MA
= === SR o 'l"."'."'.'". o R N by the number of PACFs. (4) the variogram is how spatial correlations
5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 are identified because they give unbiased estimates and are valid for a
larger range of models. The repetitions are here, the relations between
I - 7 . . . . . .
B @ d = /~ w observations at different time lags. For the last series, the variogram just
= ] = = ] o increases. It is not stationary. There is no mean. You cannot fit models
= -
o ] = .:-_; - that assume stationarity to this data.
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Effective Observations of Correlated Data

Prediction
i
=
(]
=
= [a=]
o _|
L
Estimation
o |
L]
o |
T T T T T
0.0 02 04 06 08

Correlation Coefficient

22

Effective Observations of Correlated Data

Why Include Spatial Dependencies?
I—Statistical Models

2006-03-07

What are the consequences of working with correlated data. This shows
the number of 1ID observations it would take to obtain the same
standard error of the mean given the data are all correlated by the same
value, p. This is the extreme case. Real analyzes will fall within these
bounds. Note that as the correlation increases the number of effective
observations drops, i.e., each observation provides less information. With
prediction the situation is different; the correlation provides information
to unrealized observations.

Biased Estimates of Standard Errors

OLS Regression AR(1) phi=0.36
Variable Est SE Est SE
Constant 97.6 12.3 80.8 15.2
72-97 -1.23 0.4 -0.6 0.6
Variance 0.036 0.032

AIC 1159 1153

Here is an example of a change in the Scoter breeding population
due to a change in harvest regulations. In general the estimates are
unbiased but the standard errors are. For positive correlations the
standard error are underestimated and the reverse for negative
correlations. Even though the correlations are a nuisance they need
to be addressed

[Plot of Scoter Populations with change in Harvest Regulations]

Relation to Geostatistical Spatial Models

Data occur in space (2D-3D) rather than just in time
Data occur at irregular intervals

No ordering to data in space

Stationarity is still a model assumption: a trend or large scale
variation still need to be removed

» Regression
Polynomial
Median polish (robust)
Spectral decomposition (not recommended unless periodicities
suspected)

vV Vv vy

v vy

2R
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Relation to Geostatistical Spatial Models

Why Include Spatial Dependencies?
I—Geostatistical Spatial Models

I—Relation to Geostatistical Spatial Models

Since the data occur more than one dimension, the correlation structure
may be different in different directions (anisotropy). Duck populations
may be more similar latitudinally then longitudinally.With ARIMA
models, we estimate best correlation at given lags. With spatial data, we
need to model the correlation as a continuous function of distance
between observations. Because there is no ordering of data in space and
we are estimating a continuous correlation function, the models are
jointly estimated. The correlation function only depends on distance and
maybe direction. It does not depend on position in space.

Relation to Lattice Models

» Data are a finite set of areas that occur in space: counties in
North Carolina

» Data occur in space but distance in only determined by
whether areas are adjacent or not.

> No ordering to data in space

» Stationarity is still a model assumption: trend can occur over
the entire study area.

2Q
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Relation to Lattice Models

Why Include Spatial Dependencies?
I—Lattice Models

I—Relation to Lattice Models

Using adjacency instead of distance Makes models related to the ARIMA
models. The observations or errors are correlated if they are
adjacent.Because there is no ordering of data in space, it is possible to
have a conditional model where each data point in conditional to all
those it is adjacent to.

Design of Experiments

» Experiment: Randomized Complete Block design

» Blocking accounts for the much of the unknown variation due
to location: in particular fields, woods. This variation tends to
be large and not of interest in itself. Just want to separate
from the treatment effects

» Sub-plots within a block are spatially correlated, affecting
contrasts among treatments

> A paradox: separating the sub-plots would remove the
correlations if the land is available. But, separation destroys
the advantage of blocking. It is most advantageous to control
times different treatment combinations occur together and to
model the spatial correlations

an
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Design of Experiments

Why Include Spatial Dependencies?

gl Experimental Design De5|gn Of EXperlmentS
o
o
g |—Design of Experiments
(]
(q\]
We still need some spatial analysis to know the range of the correlations.

» Arrangement of treatments controlling the distance between
different treatment combinations. Jun Zhu will talk about
improving the efficiencies to estimate the correlations due to
distance.

» Modeling the spatial correlations in the experiment

» Without modeling the spatial correlations the coverage of the
tests (e.g., above time series regression example.)

nn
Conclusions

Repetition is matching pairs of data a given distance apart
Correlated data can be tranformed back to IID

Data must be stationary: large scale variation removed

vV v.v Yy

Correlation affects the amount of information in each
observation

v

Correlation affects the estimates of standard errors

» Correlation and stationarity are similar in ARIMA and
geostatistical models

» Conditional and joint models are similar between ARIMA and
lattice models

» Spatial correlations affect arrangement of treatments, and test
coverages

n
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Outline

Spatial landscapes
Realizations

Geostatistical Data

Decomposition of the landscape

Matt Kramer Stationarity

kramerm@ba.ars.usda.gov

Variograms
Biometrical Consulting Service, ARS/BARC/USDA Ordinary kriging
Prediction

Universal kriging

VVy VvV VYV VYVY

Important concepts not covered

Spatial landscapes Fractal terrain by Rolf Lakaemper
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Generating fractal terrain

» The key concept behind fractals is self-similarity

» When a small region of a fractal is magnified, it looks similar to the
whole region from which it was taken

» Terrain has this property (loosely defined), which is why fractal
algorithms are commonly used to generate “realistic” landscapes

» The property of scale is important for field work, spatial correlation
occurs at all scales and how we choose to describe it will depend
on the organism (or process) being studied and the crudeness of

Spatial data as a process

>

We observe data generated from some underlying process we are
trying to understand

These data may be observational (e.g. bird counts in a forest) or
the researcher may have had a hand in the outcome (e.g.
designed experiment where different treatments were applied to
various locations)

We decide on a statistical model that we believe captures the
effects we are interested in

the tools available. » We estimate its parameters and possibly try to interpret them
» We typically classify the variation in the landscape we see into
large scale variation, which we might try to explain with regression Natural Spatially N Develop Estimate
type variables (e.g. elevation), and small scale variation, which we PIOCESSes | — | correlated statistical | —» p:‘r:g"r:gi;s
try to explain using a model of spatial dependency (e.g. kriging). Manipulations data - model predictions
Causes of spatial correlation Realizations

» The spatial correlation in the data may be partly (or completely)
due to our not having suitable variables to explain why
observations closer together are more similar

» Sometimes the spatial correlation is due to interactions among the
organisms themselves (e.g. root competition, aggregation), so
additional covariates (predictor variables) would not help

. Interactions
Missing
p among
covariates .
organisms

\/

Need to model
spatial
correlation

We have formal models for describing spatial correlation

We choose one consistant with the spatial pattern of our
observations

The data observed are not unique to that statistical model
The data are one realization of this statistical model

Looking at many realizations helps to better understand what
kinds of sample data this model can generate

other data ,, other data
»

gther data

Spatially E—
correlated data
you observed «

Spatial model —» other data

other data ¥ / v A other data

‘/ other data

other data
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Two realizations
noise ~ N(0, 1)

.
.
.
.
.
.
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Two realizations of strongly spacia{y

correlated data

.
.
.
.
.
.
................................................
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» spatially correlated observations look “smoother”, some of this is
due to scaling

» There are regions of high and low observations with spatial
correlation, this pattern may be masked by covariates or
treatment effects when looking at “real” data

» You cannot determine the degree of spatial correlation by looking

at these plots, we use a tool called the variogram for that

» Strongly spacially correlated data is often symptomatic of a failure

to adequately model the “trend” (large scale variation)

--------

--------
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Decomposing the landscape:

Large

scale variation

>

Typically thought of as the trend, variation on a scale much larger
than distances between observations

Important to capture all explanatory variables making up the
trend, otherwise the residuals may be “non-stationary”, which will
make modeling small scale variation difficult

Especially important to capture explanatory variables that vary
spatially (spatially varying covariates)

In designed experiments, blocking is used to capture some of the
large scale spatial variation and randomization within the block to
reduce the impact of small scale variation

Large scale variation is typically handled using covariates (e.g.
elevation, soil characteristics, latitude and longitude) and ANOVA
type variables (e.g. treatments/interventions, historical land use,
type of vegetation cover)

Decomposing the landscape:

Small

scale variation

>

Sources of variation not associated with the trend, and at a
smaller scale

Typically imagined to have two components, a smooth function
which describes the covariances (correlations) between
neighboring observations, and random error (or noise)

The scale of small scale variation is larger than the smallest
distance between observations (typically several times larger)

What may be considered small scale variation in one study may
be large scale variation in another.

We ignore spatial relationships that occur at scales not captured
by our data.

Stationarity

>

We need to make simplifying assumptions to model small scale
variation

Spatial correlation necessarily involves pairs of observations

Data sets with more than 3 observations, have more pairs of
observations than observations

We want the number of parameters in a model to be (far) less
than the number of observations.

In the simplest case, assume spatial relationships between
observations are the same everywhere in the landscape, i.e. that
the spatial relationships only depend on the distance between
observations

This property is stationarity

Stationarity

>

Often this is not realistic, we may have to allow for spatial
relationships to depend on direction (so observations may be
more correlated going north to south than east to west), or for
them to vary in some other way across the landscape.

In general, raw data will not be stationary until the large scale
variation is removed, so one must first deal with large scale
variation before tackling small scale variation

In the remainder of this presentation, we assume stationarity, but
for real data, this would need to be verified.
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Short distances
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Long distances
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2%(h) is the classical estimator of the variogram; h is the distance separating the
observations

Comparison :
Comparison of short (0.09 units apart) and long (0.2) distance pairs.
distance obs.1 obs.2 24(h); = (obs. 1 — obs. 2)? .

short 067 078 2.10 .

short 147 152 0.00 .

short -0.82  -0.00 0.67 .

short 112 -0.38 0.54 :

long 067 140 4.27 .

long 1.47 2.20 0.54

long 082 028 1.22 :

long -1.12 -0.40 0.52

» e o 0 0 0 0 0 o o © o o o 0 6 o 6 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e s e e 0 e e s
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If there is small scale spatial autocorrelation, we expect observations
near each other to be more similar than ones further away

Variogram

» This was seen in our example, 25(0.09) = 0.83 < 27(0.2) = 1.64

» The pattern that emerges, if we plot distance () on the x-axis and
24(h) (or 4(h), the semivariogram) on the y-axis, should tell us
something about small scale variation

» #(h) should be small when the distance h is small, 4(h) should be
larger as the distance & increases

» What is the best way to do this?

® o 6 6 6 0 ¢ 0 0 06 0 0 0 0 0 0 06 0 0 00 0 0 0 00 00 0 0 00 00 0

» e o 0 0 0 0 0 o o © o o o 0 6 o 6 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e s e e 0 e e s
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Variogram

» If we look at the distribution of pairs of observations by distance
apart, we find that there are far fewer pairs of observations
separated by large distances

» Thus, our estimates 4(h) for k large will not be as good as 5(h) for
h smaller

» If our data are not evenly spaced, we may find the same problem
for h very small, there may only be a few pairs that represent the
smallest distances

» This means that some regions of the semivariogram have better
support than others

Variogram

» To create the semivariogram, we break h up into many distance
groups (e.g. 0-0.2, 0.2-0.4, 0.4-0.6, etc.) and calculate §(h) for
each distance group.

» Then we can plot the average value of i for that distance group
against 4(h)

» We can also plot 4(h); for each pair of observations, this may help
us decide if the average value for each h is a reasonable estimate
of what the “mean” should be

» In practice, we have software that does this, though we may make
decisions about how large an interval each distance group should
be, and what our largest 4 should be (since beyond a certain h
results will be rather flaky as there aren’t many pairs of
observations for very large h)

Variogram (7(h) vs. h)

10
O

Ue semivariance

semivariance
classical variogram

0.5

0.0
1

0.0 0.2 0.4 0.6 0.8 1.0

distance

Variogram: What have we learned?

» The variogram nicely displays the similarity of neighboring
observations, and how differences between observations increase
with increasing distance

» Even with n = 676 observations, the empirical semivariances do
not follow the true semivariances beyond i = 0.5 units (distance
between the two furthest observations is 1.4 units)

» These data were generated from a known model (where we know
the true parameters), yet there are still problems with the
variogram

» We could regenerate data sets from this model until we created
one that produced a nice variogram, but one cannot do that for
“real” data
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Variogram: What have we learned?

» The box plots show how variable the individual semivariance
estimates are for each distance class

» The variogram is an imperfect tool, but in practice it works well
» There are robust procedures for estimating the variogram

Variogram—what model to use?

» Software for modeling spatial data will have many different models
that one can use to capture the spatial autocorrelation

» These models differ in how the strength of the correlation between
observations diminishes as distance between them increases

» The data for this example were generated using an exponential
model

» Many of the models produce very similar results (and you might
need a lot of data to be able to discriminate between models)

» It is more important to try to capture the spatial dependencies with
some model, even if you aren’t sure it is the “right” model, then to
ignore the spatial dependencies completely.

Three common variogram models

e 1
©
g
©
< 4
=
=
< —
<)
ISV —— exponential
e\ /s /J spherical
—— gaussian
[=)
S
T T T T T T
0.0 0.2 04 0.6 0.8 1.0

distance

Variogram—estimation of model pa-
rameters

» Once we have decided on a model for the data, we need to
estimate its parameters

» Many variogram models have parameters (or combinations of
parameters) that can be interpreted as the range, sill, and nugget
(these terms show geostatistics’ mining origin)

e The range is the minimumn distance separating observations
that are (nearly) spatially independent

e The sill is the value of (k) when h = range

e A nugget effect occurs if, as h (the distance between
observations) goes to zero, (%) does not approach zero

e The partial sill = sill — nugget
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Variogram models

Semivariogram v(h)
- Range
Partial |
Sill 2 sill
Nugget

B O . L L
0 20 40 60 80 100
Distance h

Image by Jay Ver Hoef

Variogram—estimation of model pa-
rameters

» A least squares approach (i.e. regresson equation) is common

» The least squares approach is usually modified so that it gives
more weight to small ~ (where it is most important to have a good
fit) and to areas of the variogram that have the most pairs of
observations

» Robust methods have also been developed

» The software typically does this fitting, you only select the model
you want to use and options for how to do the fit

» You then plot the graph against the variogram estimates (the
averaged or “binned” estimates, one for each distance category)
to check the fit visually

Variogram model parameters

o | °
[e0)
@
S o
3 ° 7
&
2
e < |
8 o
N
o
—— exponential model
—— linear model
o
2
T T T T T T I
0.0 0.1 0.2 0.3 0.4 0.5 0.6
distance

Variogram model parameters

» Two models were fit, exponential and linear, to the data up to
h =0.5.

» Note: These fits look good only because the distance was cut off
ath =0.5!
» Estimates for the variogram model parameters, nugget, partial sill,
range:
o Exponential: 72 =0.12, 02 =1.28, ¢ = 0.52
e Linear: 72=0.13,02 =151, $ = 1.00
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We now have a model for the spatial dependencies in our data.

Ordinary Kriging

» We can estimate a value at a particular location (which should be
within the general area in which the data were collected!)

» In this case, the uncertainty associated with the estimate will
depend on how far the location is from real observations and how
much spatial correlation exists

» If the location is further from any real observations than the range,
we get no “special” information from nearby observations and the
best estimate will be the mean

» Unlike, e.g. regression, a prediction at a location where we have
an observation just gives us back the value of the observation

» This is a technique that can be used for observations that are
unequally spaced as well regularly spaced (the example used
here is for regularly spaced data)

» o e 0 0 0 0 o o o © © 0 0 6 6 o 0 0 06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 0 0 0 00 00 0 0 0
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Prediction at (x =0.27,y = 0.27)

point estimate = —0.376, kriging variance = 0.044

® o 6 6 6 0 ¢ 0 0 06 0 0 0 0 0 0 06 0 0 00 0 0 0 00 00 0 0 00 00 0
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» We can also create an estimate for the region (or some subset of
the region) in which the data were collected, e.g. the average
value

Predict a region

» The uncertainty associated with this estimate will depend on the
density of real observations in the region and how much spatial
correlation exists

» These kinds of estimates are performed by software, we need to
specify the model and what output we want
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Predict a region
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Predictions & variances—perspective
view

» Left plot: krigged surface (note how smooth it is!)

» Right plot: kriging variances (variance is zero where data were
taken unless there is a nugget effect)

Predictions & variances—typical out-
put

Relative prediction and variance values coded by intensity (black =
large values, white = low values)

predictions kriging variances

Y Coord
Y Coord

0.22 0.24 0.26 0.28 0.30 0.22 0.24 0.26 0.28 0.30

X Coord X Coord

Universal Kriging—estimation strategy

» We often have other information about the landscape we are
modeling, such as covariates or factors (e.g. treatment effects), in
which case we have a mixed model

» If we can subtract out these effects, then we can use the strategy
just discussed to model the spatially correlated residuals

» For the most common geostatistical models, mixed models
software can estimate all the parameters of the model (covariates,
factors, spatial covariance parameters)

» Unfortunately, there are deficiencies in the software (limited
spatial models, lacking good diagnostics)

Universal Kriging—trend and noise

» Left plot: trend (covariate + two-level factor) (note: covariate effect
not easy to see because it, in part, tilts the plane surface)

» Right plot: trend + noise (noise = spatially correlated residuals)
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Universal Kriging—estimation strategy Universal Kriging—estimate trend
» Added a covariate and factor effect to the spatially correlated » Although we already know the function to use for spatial
observations correlation of the residuals, we’ll pretend we don’t
» We assume the spatial correlation is unrelated to these effects » First estimate the trend assuming uncorrelated residuals.
» If we had no idea of the pattern of spatial correlation (of the
reS|duaIs), we mlght start out by > fitl <- 1m (datl ~ as.factor(fl) + covarl - 1)
e assuming that residuals are uncorrelated and estimate the > summary (£it1)
covariate and factor effect using a linear model
o subtract out their effects from the data Estimate Std. Error t value Pr(>|t]|)
o determine if the residuals are stationary, and if so as.factor(£1)0 -0.59867  0.05293 -11.310 < 2e-16 +xx
] ] ) . as.factor(f1)1 0.22169 0.05497  4.033 6.13e-05 #x+
e use a variogram to determine their pattern of spatial covarl 1 75290 0.03131 55.988 < 26-16 wxx
covariance
e re-estimate the model using mixed models software Residual standard error: 0.7184 on 673 degrees of freedom
Universal Kriging—model noise Universal Kriging—estimate full model
Semivariogram of the residuals
e R software, geoR package
3 o)
true semivariance o gdat2 <- as.geodata(cbind(x,y,datl))
8 o
c o o
'g O Q O o tsl <- trend.spatial (trend= ~ as.factor(fl) + covarl - 1)
€ <
s ° 2-0 fit2REML <- likfit (gdat2, trend=tsl, ini.cov.pars=expfit2$cov.pars,
S 6?=0.49 fix.nugget = FALSE, cov.model="exp", method.lik = "REML")
$=0.101
s T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
distance
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Universal Kriging—estimation results

beta0 betal beta2
0.2051 1.2540 1.0864

Parameters of the spatial component:
correlation function: exponential
(estimated) variance parameter sigmasqg (partial sill) = 1.118
(estimated) cor. fct. parameter phi (range parameter) = 0.3689
Parameter of the error component: (estimated) nugget = 0
> sqrt (diag (f£it2REMLSbeta.var))
0.5106032 0.5107846 0.1098927

Estimates ignoring spatial correlation:

Estimate Std. Error t value Pr(>|t])

as.factor(f1)0 -0.59867 0.05293 -11.310 < 2e-16 #*#*%*
as.factor(f1)1 0.22169 0.05497 4.033 6.13e-05 x*x
covarl 1.75290 0.03131 55.988 < 2e-16 #*#*%*

Universal Kriging—estimation results

These results closely match those using the nime R package:

> fit3 <- gls (datl ~
corExp(c(1,0.1), form =

as.factor (fl) + covarl - 1, corr =
~ x + y, nugget = TRUE))
> summary (£it3)
Generalized least squares fit by REML
Correlation Structure: Exponential spatial correlation

Formula: "x + y

Parameter estimate(s):

range nugget
3.688905e-01 3.302637e-09

Value Std.Error t-value p-value
as.factor(£1)0 0.2050859 0.5105995 0.401657 0.6881
as.factor(f1)1 1.2539898 0.5107810 2.455044 0.0143
1.0863683 0.1098926 9.885727 0.0000

1.057395

covarl

Residual standard error:

Universal Kriging—model comparison

Comparison of results from ignoring spatial correlations versus
incorporating them into the model

» for the fixed part of the model (covariate + factor), parameter
estimates and standard errors differ

» differences in parameter estimates are not that large once
centering has been taken into account

» standard errors are much larger for model with correlated
residuals, this shows that ignoring spatial autocorrelation
produces incorrect tests on factors (e.g. treatment effects)

» estimation time for the linear model was < 1 sec., for the model
with autocorrelated residuals, > 10 min. (n = 676)

Important concepts not covered

Isotropy—anisotropy
non-Euclidean distance measures
Diagnostics

>
>
>
» Transforming data that are not normal
» Robust methods

>

Variances/standard errors for kriged estimates

THE END
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Field-Scale Spatial Variability:
Yield Response of Potatoes

Rose Shillito

Crop Systems and Global Change Lab., USDA-ARS, Beltsville, MD

Natural Resource Sciences and Landscape Architecture, University of
Maryland, College Park, MD

March 15 - 16, 2006

First Law of Geography

1 All things are related, but nearby things are
more related than distant things.

W.R. Tobler, 1970

)

Effective number of observations

1 The effective number of

100 = T T [ TTTT

observations, N, is related -
to the number of ol

observations, N, as a
function of autocorrelation,

BN

P.

1 A 50-year record with p=0.2 .
contains as much
information as a 33-year
record with p=0.0. 2 T

Descriptive Statistics for
Spatial Studies

1 (auto)covariance function
N-h
C(h) = cov[A,(x), A (x+h)] = % S [a o) - Al[Ax + 1) A]

autocorrelation function

cov[A (x), A (x+h)]

=

p(h)= where
var[A (0] yvar[A (x + )]
A(x;) = value of A,
1 variogram measured at x;
TR ) h = distance
y(h) = 2 A=A+ )

2N(h) 5
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Descriptive Statistics for
Spatial Studies

These statistics are commonly used in spatial studies. They indicate the
degree that the data at any two points are related to each other and, thus, give
some indication of non-independence of the data.

They are shown here as a function of distance, h, between any two points, and
are omnidirectional. Directional bounds can be specified such that only data
points within a specified radius will be considered.

These terms apply to univariate spatial studies. In multivariate spatial studies,
the prefix “cross” is frequently used (i.e., cross variogram).

The variogram is a fundamental metric in geostatistics and is related to the
other measures.

Developments and Issues

1 Geostatistics exploits fundamental autocorrelation in data
(Matheron, 1970; etc.)

1 Issue: pseudoreplication
(Hurlbert, 1984)

1 Issue: information being lost by not experimenting and measuring
as a landscape continuum

(Peterson et al., 1993)

1 Issue: computation intensity no longer an impediment; emphasis on
design of spatially efficient experiments

(Edmonson, 2005)

o

Objectives

1 Simulate a more realistic, gradually \aried treatment
design for potato response to nitrogen.

1 continuous
1 field-scale

1 Correctly test for treatment effects in the presence of
spatial variability.

1 Describe the effect of field properties in yield
response.

Experimental Field

1 BARC-W, Maryland
1 0.18 ha (135 mx 14 m)
1 Experimental unit: 3m x 3 m
1 Transect: 44 units
1 Field: 4 transects
1 Potatoes planted DOY 113
(April 23, 2003; April 22, 2004)

1 Planting density 3.6 plants m=2
1 Buffers

3matNand S ends

1 row along edges

‘ocess Road

134m

e N ha
280 kg N ha'
112kg N ha!

OkgNha'
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[ X X J [ X X J
0000 0000
00000 00000
0000 0000
. . x . . sece
Experimental Field cee Experimental Field oo
1 Calcium nitrate applied at 22
DAE (2003) and 17 DAE
(2004)
1 4levels
0 kg N ha'
112 kg N ha''
280 kg N ha'"
56 kg N ha
1 Constant across field width
1 Sinusoidal pattern along field
length
1 Noirrigation
1 Potatoes harvested 118 days
after planting
9 10
[ X X J
0000
00000
0000
: : i
Transects of Field Properties oo

Experimental Field

Image of potato field taken in July, 2003.

There were no noticeable disease impacts, and pests and weeds were
controlled throughout the 2003 and 2004 growing seasons.

A rye cover crop was planted in the field prior to both the 2003 and 2004
experiments. The rye was mechanically plowed under while the field was
chiseled and disked during field preparation prior to planting.

elevation

£ 17
8
EISQM

0.03 —

PASW

40 60 80
distance (m)

south

north

distance (m)

south north
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(X X X ]
eeoo
s
H H - - - [
Transects of Field Properties Correlation of Field Properties
Because the field was long and narrow, data gathered over the field were Elev Sand Clay PASW InitNO3 InitNO4
averaged into a transect for analysis.
Elev 1.00 -0.24 0.24 -0.10 -0.10 -0.02
Field topography was sampled via a real-time kinematic GPS survey at an
approximate spacing of 1 point per 2.7 meters. Sand 1.00 -0.81** -0.19 -0.65** -0.44**
A soil probe was used to extract a 15-9m sgmple of thle surface soil frqm t,h?, Clay 1.00 0.20 0.59* 0.54**
center of each of the 176 plots for particle size analysis and to determine initial
pre-application soil NO3-N. WHC 1.00 0.22 0.27
Undisturbed soil cores (5.4 cm dia. x 6.0 cm len.) were collected from the ) -
center of each unit of one field transect (44 units) to determine plant available InitNO3 1.00 0.73
soil water capacity (PASW). PASW was determined as the difference between _
volumetric water contents at matric potentials of -0.01 MPa and -1.5 MPa. InitNO4 1.00
**Significant at the 0.01 probability level.
14
([ X X J (X X J
(X X X ] (X X X ]
eeoo eeoo
eoo eoo
. s s
Transects of Yield

50

4 ———m—— 2003yicld
\ — == — 2004yicld

h [ Fertilizer rate

Yield (tha')
Fertilizer rate (kg N ha'')

0 e e e R e R e R A o
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

meters
south north

Mixed Model Analysis

General linear mixed model
y=Xx(+ +e
Var(e) = R

Spatial definition of R (SAS)
2
Cov(e;,e;) = f(a ,h,p)
o’=0,+0,

6 = variance; h = distance between e, and e;; p = range;
5 T T s 2 =
6,2 = partial sill; 6, = nugget
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Mixed Model Analysis - 1

General Linear Mixed Model:

Nitrogen Treatment Response —

Means and Standard Errors

. 50 = 2003 means 50 = 2003 means
XB = fixed effect(s) A 2004 means A 2004 means
T (2003)=14.26 +0.0909N - 0.0004N*N T (2003)=13.78 + 0.0910N - 0.0002N*N
Zu = random effeCt(S) 40 —— 5(2004):1948 +0.1599N - 0.0005N*N 40 —— = 5(2004):18A39+0A1589N—0A0005N*N
e = random errors 7 7
Since the data were effectively contiguous, no blocking was necessary and the ~ 30 4 B PP S - ~ 30 ,I, ————
random effects were not considered. The data for 2003 and 2004 could have o) X ~ s /E - RN
been considered a random (year) effect, but two years of data does not allow i i 20 e
for reasonable variance calculations.
In SAS, the components of the = : 10
covariance matrix are output in terms = ¢ ! ot <oatial o | _ _ _
of the variogram. But the data gz ! . without spatial error covariance . with spatial error covariance
. . . S & T T T T T T T T T 7 T T 1 T T T T T T T T T T T T 1
Con_SIdered In the quarlance are the § i 0 50 100 150 200 250 300 0 50 100 150 200 250 300
residuals after the fixed effects have ; ' N application (kg N ha') N application (kg N ha')
been taken into account. # ;
distance, h 18
([ X X J (X X J
(X X X ] (X X X ]
o000 o000
eo0o eo0o
. . oo o0
[ J H H [ J
Mixed Model Analysis Analysis of Residuals
Model Non-spatial Spatial
2 2
R R 2 2003 2 - N +NxN + spat. cov 07 2004 | S N +NxN + spat. cov
———=—— N +NxN +NxClay + spat. cov - |‘\ —+—— N+ NxN + NxClay + spat. cov
2003 10— _w0— AP y ‘\:H, 1
FR ER .
N treat + N treat? 0.34 0.68 i, i,
N treat + N treat?2 + N treat x Clay 0.40 0.70 [ i o
10— 10—
2004 1 1
RS N N L L Y N B B B | J A ) L N N A B B |
N treat + N treat? 0.28 0.54 L N . S RN e ® e @ w W @
N treat + N treat? + N treat x Clay 0.59 0.69
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(X X J (X X J
(X X X ] (X X X ]
T T
- oo Mixed Model Analysis .
Soil Type . y :
KmA . Model Non-spatial Spatial
Keyport and Matawan Soils, R2 R2
0 — 2% slopes
sandy loam, silt loam 2003
D1B
Downer-Ingleside Loamy
Sands, 2 - 5% slopes N treat + N treat2 + N treat x Soil Type 0.66 0.74
loamy sand N treat + N treat? + N treat x Cl Soil T 0.67 0.74
reat + N treat? + N treat x Clay x Soi e . .
MwkB yABOT R
Matawan and Keyport Soils, 2004
2 — 5% slopes
loamy sand, silt loam
Special Soil Report, 1995 N treat + N treat? + N treat x Soil Type 0.53 0.64
21 N treat + N treat? + N treat x Clay x Soil Type 0.63 0.71 =
(X X J
(X X X ]
eeoo
a2
Mixed Model Analysis - 2 Yield Estimation .
The coefficient of determination (R2) was calculated for various mixed 1 Interpolated yield estimates 1i2ke Nha ”‘“E,f"‘",ikfj_h
models developed for the data. The quadratic model (N treatments + N using kriging el Ky )
treatments?) was considered the base model—the nitrogen response I I O o I O
curve. The only significant field variable (as determined by backward . . |
elimination regression analysis) was clay. 1 High yields at one end of LN L
field; low yields at other end rs ot weight k)
The yield residuals (observed yield — predicted yield) exhibit some spatial wlll odU od sl L
patterning. Including the N treatment x clay interaction decreases the 1 Poor yield response to £ "
residual variability, especially at the north end of the field in the 2004 data. fertilizer where clay and init. R N R B N 15
il nitrate low =
Other interactions (e.g., soil type—a classification variable) were tested soil nitrate lo N 40_' N ,
although not developed through significance testing or AIC minimization.
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Summary and Conclusions - 1

1 Field properties varied throughout field.
1 Yield response varied throughout field.
1 Yield response to treatments varied throughout field.

1 Spatially correlated errors made treatment means less
distinct.

1 The linear association between yield and treatments
increased if spatially correlated errors were considered.

27

Summary and Conclusions - 2

1 The effect of field properties (continuous and classed)
was tested; clay content and soil type class both proved
significantly related to yield.

1 Residuals still exhibited spatial variability throughout
field.

1 Pattern of yield response similar both years; magnitude
of yield will require management and climatic inputs.

1 Treatment application pattern allowed for systematic

testing of all treatments throughout field, effectively
increasing experimental design by four.
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Lattice Models with Spatial

_ Dependencies - An Introduction
Mary C. Christman
Univ. of Florida
Department of Statistics - IFAS

3/9/2006 USDA Spatial Models Workshop

Additional Comments

7 Note that unlike geostatistical modeling, in lattice
models there is no concept of interpolating
between plots or subareas.

2 As a result, we are less interested in mapping
and more interested is modeling such as
regression with correlated data or mixed models
with covariance matrices that are not diagonal

3/9/2006 USDA Spatial Models Workshop

Lattice Models

Z Area of interest is subdivided into mutually exclusive and
exhaustive plots, strata, or subareas

z Data are aggregated or summary values for each
subarea

EXAMPLE: Sudden Infant Death Syndrome statistics for
counties in North Carolina in the 1970s

USDA Spatial Models Workshop

Questions

| 22 Classic models are used to test hypotheses about
explanatory variables (factors, covariates, etc)
2 Q: Should we worry about spatial autocorrelation?

2 If s0, how should the spatially-explicit aspect be
incorporated into our modeling effort?

2 When planning a study, need to address:
2 Spatial arrangement of treatments if planned experiment
2 Spatial arrangement of plots when observational study

3/9/2006 USDA Spatial Models Workshop




Additional Comments

7 Traditionally, the spatial autocorrelation that was
presumed to be a potential problem was handled
in experimental designs using such techniques
as blocking

2 E.g. the Average Distance Balanced Design in which
treatments are arranged spatially so that the average
distnace between plots of different treatments is
approximately constant over all treatments

3/9/2006 USDA Spatial Models Workshop

Additional Comments

7 Even with restricted randomization methods to
account for spatial arrangement of locations,

% there may still be spatial autocorrelation and hence
the error terms/response variables are not
independent

2 and so classical assumptions fail.

3/9/2006 USDA Spatial Models Workshop

Classic Model Assumptions

2 For General Linear Models

@ Error terms are Normally distributed with constant mean (u =
0) and variance (c2) and

@ Error terms (and hence the responses) are independent

& 2 For Generalized Linear Models

7 Response Variable is distributed appropriately (usually
Binomial, Poisson or similar) with a mean that is a function of
covariates (u = XP) and variance that depends on the mean.

# The responses are independent

3/9/2006 USDA Spatial Models Workshop

Failure of the Independence Assumption

7 Due to non-spatial issues such as sampling
design

% E.g. blocking, clustering or temporal effects

i 22 Due to Spatial autocorrelation

2 Correlation between 2 values of the response
variable, Y(s) and Y(s) at locations s;and s; is non-
zero and a function of distance

2 How does it arise?

3/9/2006 USDA Spatial Models Workshop




Additional Comments

z Non-spatial lack of independence is handled as usual,
e.g. random blocks or time series.

2 Spatial lack of independence is handled using
autocorrelation covariance matrices that require
additional information

2 form of the non-independence (as a function of distance),
2 neighborhood structures, etc.

2 Note: | assume that distance is Euclidean unless

otherwise specified

3/9/2006 USDA Spatial Models Workshop

Example - Bell Pepper fungus

Leaf Disk Assay

Field plot was
subdivided into 400
1x1 m subplots.

In each subplot, 5 leaf
disks were assayed for
presence of fungus.

Recorded number that
tested positive.

USDA Spatial Models Workshop

Sources of Spatial Autocorrelation in'Y

2 Induced

© \Values close in space could be similar due to
an important explanatory variable that varies
smoothly in space

1 E.g. The spatial distribution of bell pepper fungus in
a field
¢ could be due to spatial distribution of soil moisture
* could be due to geography (e.g. elevation changes)

3/9/2006 USDA Spatial Models Workshop

Additional Comments

7 Graph shows the number of leaf disks assays that
tested positive for fungus (out of 5) for each 1x1 m plot
within the study area.

7z Note the trend (low in SE corner, high in NW corner) as
well as grouping of similar values spatially.

Z The next slide shows that the pattern may be related to
soil moisture, i.e. the spatial patterns show similarity. Is
it possible that moisture is a partial predictor for fungus
presence?

=]
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Example - Bell Pepper fungus

Leaf Disk Assay Soil Moisture

3/9/2006 USDA Spatial Models Workshop

Sources of Spatial Autocorrelation in Y

22 Spurious

© Values close in space could be similar due to
chance

1 E.g. due to the spatial arrangement of the sampling
locations

1 E.g. due to smoothing of the data during preliminary
data management

1 E.g. due to the scale at which the data have been
aggregated

3/9/2006 USDA Spatial Models Workshop

Sources of Spatial Autocorrelation in'Y

22 True

# Intrinsic, underlying covariance that is a function of
distance

1 E.g. for the spatial distribution of soil moisture, it could be
due to soil characteristics that allow water movement into
and through adjacent plots

2 Causal interaction among nearby locations

1 E.g. The spatial distribution of leaf fungus could be due to
dispersal mechanism

* Leaves touching vs. air dispersal

3/9/2006 USDA Spatial Models Workshop

Additional Comments

zn Spurious autocorrelation is unlikely for the bell pepper
fungus dataset since plots are small and there is no data
manipulation prior to analysis.

7z Spurious autocorrelation is the hardest to capture and
identify.
2 An example would be in precision agriculture due to the slight
delay in recording soil attributes. The recording device often has
a delay of 3-4 seconds but the location is recoded not where the
data were collected but where the recorder reports the value.

7 See this sometimes in satellite images as well due to
interpolation for pixel data
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Example

Reflectance Values From An Areal Survey of Pollution
Levels Due To Pumping Of Waste Material Into The
English Channel

Darker areas represent more
polluted spots. This location is
closest to the source of the
pollution.

Values in any one grid cell are
averages over the cell and, due
to location error, possibly
include values in neighboring
cells as well.

3/9/2006 USDA Spatial Models Workshop

Additional Comments

z The large-scale mean is usually dependent on explanatory
variables such as covariates or treatment levels or even
location (such as a trend surface that is a polynomial in
space.

7z The small scale variation can be used to calculate the
conditional mean, that is the predicted value at a location
using the covariates at a location and the values of
observations around that location. The conditional mean is
the sum of several parts: 1) the mean of the individual
subplot, u(s;); 2) the weighted average of the error terms
for all of the neighboring subplots.

3/9/2006 USDA Spatial Models Workshop

' Autoregressive Lattice Models

Y(s;)=u(s;)+ zwij[Y(Sj)_ﬂ(Sj)]‘l'g(si)
SjENi
Z is the response variable at location s;

2 is the large-scale trend or mean for location s,
% may depend on explanatory variables or treatments

2 DNVACRENTIERP)| small-scale variation at location s,

% Depends on the values in the neighborhood and weights a

2 is the error term, conditionally independent with zero
mean and constant variance

3/9/2006 USDA Spatial Models Workshop

% Example of the Decomposition

Aquatic Species Richness in Caves in Southeast U.S.




Additional Comments

ERI perspective plots show the decomposition of species richness

values in counties throughout the southeast US.

P - are shown in (a), a plot of the observed values of log (aquatic

species richness) in counties in the southeast US.

> [4€R) are shown in (b) a plot of the estimated county means of log
(aquatic species richness) predicted by the explanatory variable,
X=number of caves found in the county.

» DUCPIRCRIRRIER)| are shown in (c), a plot of the estimated small-

scale variation in each county based on observations of log (aquatic
species richness) in contiguous counties. The weights were w; = 1 if
counties i and j were contiguous and w; = 0 if they were not.

» E{QJP] are shown in (d), a plot of the unexplained or residual noise.

sb4 7 Note that the values in (b), (¢ ) and (d) add up to the observed values

Large-scale Variation

2 Could be a function of factors being manipulated
in a planned experiment

@ E.g. a split-plot design with a whole plot factor of
crop rotation schedule and a subplot factor of
nitrogen source

2 Could be explanatory variables being observed

% E.g. soil moisture in the bell pepper fungus study

# E.g. the number of caves in a county to predict the
species richness of aquatic subterranean animals

shown in (a).

£ it
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Constructing Neighborhoods

Small scale Variation

1 2 Depends on whether layout is regular or irregular
> @Y (s;) - )]
= i J J

2 Two parts
© Neighborhood structure

© Weighting scheme

: Every cell (plot, county) must have a defined
{/it. neighborhood

3/9/2006 USDA Spatial Models Workshop 3 ; 3/9/2006 USDA Spatial Models Workshop




USDA Spatial Models Workshop

B First-order NB

-+ Second-order NB

3/9/2006

USDA Spatial Models Workshop

Additional Comments

2 The bell pepper fungus data was collected on a regular
rid layout with 20 rows (“row1”) and 20 columns
((J“quad”)—
% data for each of the 400 cells in the field plot.
% For example, while soil moisture may in fact vary over a 1x1
m square plot, only a single number is reported for each 1x1
m plot and so represents the value for that plot.
7z Showing two graphics here
# the left one is a perspective plot which shows the variation in
soil moisture values

2 The right one shows the same information as color
gradations for each cell for which we have data

3/9/2006 USDA Spatial Models Workshop

Additional Comments

z These neighborhoods are two of many possible
examples — one can further change them or even use
different setups.

2 For example, in the case of the water moisture, one might
expect that autocorrelation would be higher in the within row
direction rather than across rows. This could be due to
watering the field by flooding of the pathways between rows
or of the beds are raised. In that case, the neighborhood
might only be the plots adjacent and within the same row, say
the N-S plots only.
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Examples: Neighborhoods for Non-Square

Lattices

z N = {cells labeled A} is a neighborhood whose
boundaries touch the boundary of the i cell

z N, = {cells labeled A or X} is a neighborhood whose
centroids are within a specified distance from the
centroid of the 1 cell

Additional Comments

7 Weighting can involve some combination of
these approaches and is clearly integrally related
to the definition of the neighborhood.

> Weights are usually standardized so that they

sum to a constant, e.g. m

7 Negative weights (which imply a negative
correlation) are usually avoided but there are
times when they are appropriate.

3/9/2006 USDA Spatial Models Workshop

Weighting Scheme

z The larger the weight the more that neighboring plot
contributes

z» Common approaches
# As a function of Euclidean distance
2 As a function of contiguity
# Directional weighting (certain directions contribute more than
others)

2 As a function of the length of the common boundary
2 Weighting to correct for heterogeneity of variance

3/9/2006 USDA Spatial Models Workshop

Weighting Scheme

2 Crucial to identify appropriate weighting method
7 Should have some idea of
# The range of likely autocorrelation
# How fast autocorrelation decays as distance increases

# The direction of likely autocorrelation

1 The directionality is influenced by both the choice of
neighborhood as well as differential weighting by direction.
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Weighting Scheme

2 Methods for exploring likely form of autocorrelation:

© Calculate some common autocorrelation statistics such
as Moran’s | or Geary’s C
1 Validity depends on the neighborhood and weighting scheme
1 Try different neighborhoods and weights

© Do variography using the centroids or nodes of a lattice
as the point locations

3/9/2006 USDA Spatial Models Workshop

' More Complex Weighting

7 Aquatic Cave Species in SE US
2 Defined the neighborhood to be counties with county
seats within 56 km of the it county

% Uses Euclidean distance to weight closer counties
higher than farther counties

USDA Spatial Models Workshop

' Simple Weighting

7 Bell Pepper Fungus
2 Let N, be the 1x1 m plots having boundaries with the
plot (first-order NB)
# Define the weights to be o MEy BT KV ST RS
# These weights imply
1 no directionality
1 each neighboring plot is equally autocorrelated with the i
plot

1 The autocorrelation is the same regardless of the location of
the i plot

3/9/2006 USDA Spatial Models Workshop

Additional Comments

z The numerator is a constant times the inverse of the
distance between the 2 locations (inverse so that closer
neighbors weight higher than further neighbors).

z The denominator is a scaling or standardizing function
so that p is the correlation between the ith county and
its nearest neighbor.

Z This approach is a type of “row standardization” and
constrains the constant p to be less than 1.
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Modeling S Modeling Approaches
2 S0, )

@ having identified the explanatory variables for the large- o Simultaneous Autoregressive Models (SAR models)
scale variation (trend),

; . " » Conditional Autoregressive Models (CAR models)
% the neighborhood structure and weighting scheme for -- , : e , , ,
the small-scale variation, and .o 22 1he difference is in the variance-covariance matrix

2 checked for homogeneity of variance, - for the {Y(sy), ..., Y(s,)}
7 the next step is 2 Both can be fitted but fitting the SAR model leads to
2 to do the actual model fitting to obtain estimates of the residuals that are correlated with the neighboring Y-
model parameters, means (and SEMs) and, if desired, i) values

predictions (and MSPE). oy % CAR model does not have this problem and is generally
137 preferred

z Two approaches

3/9/2006 USDA Spatial Models Workshop 3 ; ' ¥ 3/9/2006 USDA Spatial Models Workshop
74

¢} Simple Example - Reflectance Values
for Pollution in the English Channel

Additional Comments

Data Values
7 Every SAR model can be described in terms of a 7] s8] 47

CAR model but CAR models are not always (¢ a] ss[ 4

39 55 37

easily or naturally described as SAR models. 33| 24| 38
This is based on the choices of neighborhoods e 18] 31| o

) : : 21| 26| 30
and variance structure and weights. 12| 17| 18
6 14 17
4 5 5

from Haining (1990)

£ it
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f Additional Comments

# 2 Like the bell pepper fungus, this dataset is on a
regular grid. So, the spatial coordinate system is
taken to be

2 the row ID, ", and

@ the column ID, “c”.

i P
= 3/9/2006 USDA Spatial Models Workshop
4

f Additional Comments

2 2 The conditional mean is the predicted value for

an individual observation. The unconditional
(marginal) mean is the mean of the trend part
only.

Z The conditional mean is estimated using the
BLUP and the unconditional mean by the BLUE
(LSmeans).

i P
= 3/9/2006 USDA Spatial Models Workshop

i Conditional Autoregressive Model

Y(s;)=p(s)+ D2 @;[Y(s;)—pls )]+E(s;)

SjENi

2 The error terms are conditionally independent
and Normally distributed with mean 0 and
constant variance G2

2z The conditional mean of YEESP] is
H(s;)+ 2 B[Y (s7)— pls )]
and the unconditional mean is

i P
= 3/9/2006 USDA Spatial Models Workshop
4

i Conditional Autoregressive Model
Y(s)=u(s)+ D@,[Y(s;)— (s )1+ ECs;)

SjENi

7 The conditional variance of [BEETIIAE N
IS
o1
and the unconditional variance is

where is the matrix version of the
weights for the neighborhood

i P
= 3/9/2006 USDA Spatial Models Workshop
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Large-Scale Trend

Y(r,c)= o+ Bir + e+ Prore +

IBIII"Z +ﬁ22C2 ++€(I’,C)

23 Haining (1990) started by ignoring the spatial
autocorrelation and fit linear regression models
using polynomials in (r, c) where ris the row ID,
C is the column ID

7 He determined that the linear model had the best
fit Y(r,c)= By + pir+ Brc+&(r,c)

3/9/2006 USDA Spatial Models Workshop

Neighborhood | Moran’s | Normal Normal Permutation
Statistic p-value p-value

Row 0.3215 2.869 0.004 0.001
i Column 0.5434 4.775 0+ 0+

" | Diagonal 0.2043 2.514 0.012 0.007

I | First-order 0.4324 5.468 0+ 0+
* | Second-order 0.3251 5.848 0+ 0+

The highest Moran’s | value occurs for the column
neighborhood and the second highest for the first-order
neighborhood.

3/9/2006 USDA Spatial Models Workshop

Small-Scale Variation

7 We should now test for autocorrelation in the
data, so we'll use the residuals from the large-
scale trend fit

2 Calculate Moran’s | for different neighborhood
structures (see next slide) using weight = 1 if grid
cell was in the neighborhood and 0 otherwise.
From this we can tell

% |f there is autocorrelation

# Which neighborhood is best (among those reviewed
of course)

3/9/2006 USDA Spatial Models Workshop

Additional Comments

z Under the null hypothesis of no autocorrelation, the
expected value of Moran’s | is E{I} = -1/(n-1). The stronger
the correlation, the closer | is to 1.

7z Two approaches for testing autocorrelation using Moran’s |
are:

7 1) approximate normality holds assuming the number of
cells Is sufficiently large (also depends on the extent and
manner in which the cells are connected by the weights).
The usual rule of thumb is at least 20 locations.

2 2) permutation or randomization test in which the Z data
are randomly permuted (assigned to different locations)
repeatedly and the observed results compared against the
expected results.

3/9/2006 USDA Spatial Models Workshop 48




Fit the CAR model

, | Model was fit with a linear trend and with weights w;=p
. if plot j was in the neighborhood and = 0 otherwise.

Root Log
Estl mate Estl mate Estl mate Esti mate MSE | Li kel .

1 |50.966** | 2 -2.733%* | -2.131* | 0. 256** |

53 755%* 1 757** 0 442+ *

g Additional Comments

z There is very little difference in the models with the two
different neighborhood structures, so for parsimony
choose the model using the column neighborhood

z Note that the estimated spatial weight is 0.256 for the
first-order neighborhood and 0.44 for the column
neighborhood. The difference in values has more to do

60. 269"

(2) column neighborhood with 9x9 area
(1a) first-order neighborhood with 8x8 interior area

3/9/2006 USDA Spatial Models Workshop 49

EEEmuEEaS

Boundary Effects i
HEEEEEEEN
HEEEEEEEN

7 The neighborhoods of [ HIHIHINENENEN
HEEEEEEEN

the cells on the edges BEEEEEEEEE

are halved
2 Standard errors of predictions at the edges very high
% Introduces possible estimation bias

7 One way to avoid is to analyze only that part of
the study region completely within the entire
region

3/9/2006 USDA Spatial Models Workshop

with the number of neighbors in the neighborhood than
with any estimate of autocorrelation.

2 The final model is the result of adjusting for boundary
effects (next).

3/9/2006 USDA Spatial Models Workshop

Additional Comments

7z Choose the subregion within the study area so that
every cell in the subregion has a complete
neighborhood that can be used in the modeling

Z In the bell pepper example, that would be a subregion
19x19 (rather than 20x20) that would be modeled (Y-
values on the left side of the model). The remaining
cells would appear only on the right side of the model in
the small-scale variation.

3/9/2006 USDA Spatial Models Workshop




Fit the CAR model

| Model was fit with a linear trend and with weights w;=p
if plot j was in the neighborhood and = 0 otherwise.

Root Log
Estl mate Estl mate Estl mate Esti mate MSE | Li kel .

1 |50.966** | -2 -2.733%% | -2.131* | 0. 256** |
53 755%* 1 757+ 0 442%*
~ 1a |60.289** —3.467** -2.050* | 0.251** |10.00| -211 |

Additional Comments

7 Note the difference between model 1 and model
1a in the estimates of the model coefficients.
Due to
@ smaller number of observations (64 vs. 81)

2 Better estimation of the spatial autocorrelation since

Models: (1) first-order neighborhood with 9x9 area
(2) column neighborhood with 9x9 area

(1a) first-order neighborhood with 8x8 interior area

3/9/2006 USDA Spatial Models Workshop 53

Summary and Conclusions

2 When data are collected in aggregate for non-
overlapping subregions of the study area and

7 The spatial arrangement is such that there are
effects due to space (or to spatial covariates that
were not measured)

2 Then consider models that incorporate an effect
due to spatial correlation

3/9/2006 USDA Spatial Models Workshop

every observations has a full neighborhood

3/9/2006 USDA Spatial Models Workshop

Advantages

7 Accounts for some additional sources of
variation

7 Increases understanding of the process of
interest

2 Qverall lattice models are excellent approaches
for incorporating spatial correlation and for
providing improved predictions
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Caveats When Fitting Lattice Models

z If covariates are available that explain the seeming
spatial correlation, then these are more appropriately
used

z Choice of neighborhood and weighting scheme are
critical to good model fitting

7z Sample sizes could be too small to adequately estimate
the spatial correlation

7z Modeling might require a lot of exploratory analyses.
» Note that this means that the conclusions are only
tentative and should be independently tested with a new
experiment.

= 3/9/2006 USDA Spatial Models Workshop

88



Colorado potato beetle infestation in plots
on a lattice design

Matt Kramer and Don Weber

kramerm@ba.ars.usda.gov, weberd@ba.ars.usda.gov

Biometrics (MK) and Insect Biocontrol (DW), ARS/BARC/USDA

Outline

»
»
»
>
>

Introduction to Colorado potato beetles
Experimental design and plots

R software—spdep package

Spatial weights

Models and analyses
e Ignore spatial dependencies
e SAR
e CAR

Diagnostics

Conclusion

Introduction to Colorado potato beetles

There are 4 life stages: egg, larva, pupa, adult. Larvae and adults feed on leaves.

photographs by Doro Réthlisberger, Zoological Museum, University of Zurich

Introduction to Colorado potato beetles

>

Colorado potato beetles (Leptinotarsa decemlineata) overwinter
as adults and can pass through 2—3 generations in Maryland.

The data were taken (mid May) when all life stages were present

CPB is a pest in North America (where it is native) but has also
been introduced into Europe, which now suffers damage from it
comparable to that in North America.

CPB attacks plants in the nightshade family (potatoes, eggplants,
tomatoes, and their wild relatives).

Colorado potato beetles have developed resistance to a long
succession of different insecticides, and its natural enemies do
not reliably control it in current farming practices.

New practices, in combination with natural enemies, show
promise to maintain CPB populations below economic thresholds,
reducing the need for pesticide applications.
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Introduction to Colorado potato beetles Cooperators and administrators

» In this experiment, tillage practice, planting date, and mulch cover

s Left to right: Matt Greenstone, Phyllis Johnson, Don Weber, Ron Korcak, John Teasdale,
were manipulated.

Aref Abdul-Baki, Vinod Kumar
» We chose these data for a lattice example because the plots are ;
laid out on a lattice, and it is a reasonably small data set. At the
onset, we knew there were treatment effects but did not know if
there were spatial dependencies.

» The goal of the project is to determine which combination of
treatments best reduces CPB infestation

» In addition to treatment effects, we thought there might be block
and border effects (and spatial correlation among neigboring
plots)

» Sampling occurred in the interior of the plots

» Spatial correlation was suspected because adults and larva are
mobile, both walk and adults can fly

Field team Experimental design and plots
Left to right: Jenn Curtis, Jon Curtis, Eddie Bender, Michael Donovan, Mike Athanas, » Treatments were cultivation (whole plot effect)
Greg Benedict e E = early planting, no till

e L = late planting, no till
e C = late planting, till
and amount of mulch used (split plot effect)
e N =rye cover crop only, none added
e P =rye cover crop + 1x mulch (straw from rye cover crop)
e X =rye cover crop + 2x mulch
» The measure of infestation is CPB equivalents per plant stalk =
number of adults + 2 of the number of large larvae + 1 of the
number of small larvae, averaged over 20 plants per plot

» Split plot design (though not analyzed that way here)

» Four blocks (in two spatially distant sets), nine treatment
combinations per plot, so 36 total observations
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Experimental design and plots
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Experimental design and plots

SOUTH FARM EAST (SF-12) LAYOUT as PLANTED 3/30 & 4/30 |
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12ROWS  12ROWS 12ROWS  4r 12ROWS  12ROWS  12ROWS

10by 10
<< EAST

3281 long total
fence 160 1. tilled

\ \
5%
_

|
B \\

287 . wide

%

v
_

.

/44

///.
.

//

Early-planted no-till
potatoes with high muich
(front), low mulch, and no
added mulch (back) in June

Plots with different
mulch treatments
(including conventional
tilled, background)

No till planting into
a tall, dense rye
cover crop (April)

Data collected for Plot A

trt X Y il plant CPB borders mulch

LN 130 185 no late 0.12 N, E none

LP 80 185 no late 0.00 N +1x mulch
LX 30 185 no late 0.02 N,W +2x mulch
CX 130 155 vyes late 033 E +2x mulch

CN 80 155 vyes late 0.32 - none

CP 30 155 vyes late 019 W +1x mulch
EP 130 125 no early 410 E,blockB +1x mulch
EX 80 125 no early 0.67 blockB +2x mulch

EN 30 125 no early 1.28 W, block B none
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CPB equivalent incidence on plots

South Farm Plots oN EN x P w X

% EP LN cN X EN

cP cN %
cP EX P % LN EP

EN EX EP

cN % cP

EP EN EX

East Line Road Plots

R software—spdep package

» R software (http://www.R-project.org) was used for the
analysis

» spdep package (main author: Roger Bivand) which has functions
for creating spatial weights, tests for spatial autocorrelation (e.g.
Moran’s 1), estimating spatial simultaneous autoregressive (SAR)
lag and error models, conditional autoregressive (CAR) models (in
a preliminary stage), and includes routines for using sparse
matrices

» Installation (on Linux and Windows) of the spdep package
requires some other R packages. For Linux, some of these
require compiling C and Fortran code.

Spatial weights

» There are several important decisions to make, e.g. what is a
neighbor and how should neighbors be weighted

» Spdep can be given the xy coordinates of the middle of each plot
and then use a distance cutoff to determine neighbors (weight of
1 for neighbor, 0 if not a neighbor)

» This was tried for various distance cutoffs, and spatial
dependence was smaller with a bigger cutoff (bigger
neighborhood)

» One can also input a matrix of spatial weights, which could
depend on characteristics not directly related to distance (e.g. if
plots share a common border). This could be binary (1 if a
neighbor, 0 if not a neighbor) or scaled to represent the
relationship between neighbors (e.g., length of common border)

Spatial weights

» We used spatial weights that depended on the length of the
common border, scaled so the sum of the weights = 36.

» For the same set of residuals, this weighting scheme produced
higher estimated spatial dependencies (i.e. seemed to capture
more of the spatial correlation)

» Another alternative is to try geostatistical models (e.g. exponential
decay, spherical, etc.), these would be based on the distances
between the centers of the plots.

92




Spatial weights for lengths of common
border for Block A (not scaled)

More on spatial weights

» spatial weights can be symmetric (as in the last example) or
potID|[LN LP LX CX CN CP EP EX EN asymmetric
LN 0 3 0 5 0 0 0 0 0 > Zsymg?jt.;;c w?ightsir:)ctcufrévhen;hﬁhs.,pgtial weightblof .the effect of
on B differs from that of B on A. This is reasonable in many
t)P( 3 0 3 0 5 0 0 0 0 circumstances, e.g.,
0 3 0 0 0 5 0 0 0 e prevailing wind is mostly from one direction
CX 5 0 0 0 3 0 5 0 0 ¢ the number of neighbors of A is less than that of B, and since
CN 0 o 0 3 0 3 0 o 0 B is influenced by many neighbors, the effect of A on B is
CcpP 0 0 5 0 3 0 0 0 5 diluted
EP 0 0 0 S 0 0 0 3 0 » row standardization (i.e. for each observation, the sum of the
EX 0 0 0 0 5 0 3 0 3 weights of the neighbors is one) is often suggested, this will lead
EN 0 0 0 0 0 5 0 3 0 to asymmetric weights (weights of neighbors will be larger if an
observation has fewer neighbors).
Ignore spatial dependencies Another look at the data

>

An analysis to determine which treatment, block, and border
effects to include in fixed part of model using stepwise regression
(based on minimizing AIC)—this is because there were a large
number of candidate regressors and only 36 observations to
support their estimation.

Effects were coded as zero-one dummy variables, including some
interaction effects

Since the data were based on counts, a square root
transformation was performed. Diagnostics also suggested that
this transformation was better than a log or no transformation

Model: \/y = X3 + €, where
e /y = square root of Colorado pototo beetle equivalents

e X3 = fixed effects
e € = uncorrelated random error (noise)

Data for Block A—border effects (b1-b4) differ depending on block, m1
and m2 represent mulch levels, format for stepwise regression

trt X Y til pl CPB b1 b2 b3 b4 m1 m2
LN 130 185 0 0 0.12 1 0 1 0 0 0
LP 80 185 0 0 0.00 1 0 0 0 1 0
LX 30 185 0 0 0.02 1 0 0 1 0 1
CX 130 155 1 0 033 O 0 1 0 0 1
CN 80 155 1 0 032 0 0 0 0 0 0
CP 30 155 1 0 019 O 0 0 1 1 0
EP 130 125 O 1 410 O 1 1 0 1 0
EX 80 125 O 1 067 O 1 0 0 0 1
EN 30 125 O 1 128 0 1 0 1 0 0
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Model from Stepwise regression

Estimate Std. Error t value Pr(>|t])

(Intercept) 0.
TILLAGE 0.
PLANT.TIME.LATE 1.
mulch2 0.
b.AB.west -0.
block.D 0.
b.D.west -0.
b.CD -0.
b.C.east 0.
b.AB.east 0.
PLANT.TIME.LATE:mulch2 -0.
TILLAGE:mulch2 -0.

Residual standard error: O.

Multiple R-Squared: 0.9438

1704
6132
4389
1054
3111
5530
8014
4682
3205
1351
7913
3239

O O O O O O O O O O O O

1938 on 24

degrees of freedom

, Adjusted R-squared: 0.9181
F-statistic: 36.66 on 11 and 24 DF,

p-value: 2.656e-12

* Kk k

* Kk k

* %

* kK

* kK

* Kk k

* ok k

.0830 2.053 0.051146 .
L1114 5.507 1.16e-05
L1114 12.921 2.67e-12
.1301 0.810 0.426118
1111 -2.800 0.009925
.1150 4.810 6.73e-05
.1870 -4.286 0.000255
.1150 -4.072 0.000439
.1428 2.245 0.034268
.1004 1.345 0.191332
.1860 -4.255 0.000276
.1860 -1.741 0.094438 .

Predicted (green) vs. Data (orange)
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Moran’s I on detrended observations
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> o
©
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detrended sqrt (CPB.equivs)

Which spatial dependency model (for
SAR models)?

Lagrange multiplier diagnostics for spatial dependence

LMerr = 3.9604, df = 1, p-value = 0.04658
RLMerr = 0.6708, df = 1, p-value = 0.4128
IMlag = 5.7218, df = 1, p-value = 0.01676
RLMlag = 2.4321, df = 1, p-value = 0.1189
SARMA = 6.3925, df = 2, p-value = 0.04092

Suggests the lag model might be better than the error model
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Simultaneous autoregressive spatial
models

There are two basic models fit by spdep
» spatial simultaneous autoregressive error models

y=X0+u,u=A\Wu-+e

where
e y = square root of Colorado pototo beetle equivalents
e X[ = fixed effects
e u = correlated errors with two components

A = autoregressive error parameter

e Wu = weighted vector of neighboring residuals (describes
which residuals of the neighbors the residual of the
observation is correlated with and how they are weighted)

e ¢ = uncorrelated random error (noise)

Simultaneous autoregressive spatial
models

» spatial simultaneous autoregressive lag models
y=pWy+XpB+e

where (for the new terms)
e p = autoregressive lag parameter

e Wy = weighted vector of neighbors (describes which
neighbors the observation is correlated with and how they are
weighted)

Comparison of fixed effects estimates

effect linear model (SE) error (SE) lag (SE)

(Intercept) 0.17 (0.08) 0.18 (0.06)  0.36 (0.10)
TILLAGE 0.61 (0.11) 0.55(0.08) 0.61(0.08)
PLANT.LATE 1.44 (0.11) 1.43(0.08) 1.45(0.08)
mulch2 0.11 (0.13) 0.08 (0.10)  0.13 (0.10)
b.AB.west -0.31 (0.11) -0.31(0.07) -0.38(0.09)
block.D 0.55 (0.12) 0.52 (0.07) 0.65(0.10)
b.D.west -0.80 (0.19) -0.71(0.13)  -0.85(0.14)
b.CD -0.47 (0.12) -0.41 (0.08) -0.58 (0.10)
b.C.east 0.32 (0.14) 0.33(0.09) 0.30(0.11)
b.AB.east 0.14 (0.10) 0.10 (0.06)  0.09 (0.08)
PLANT.LATE:mulch2 -0.79 (0.19) -0.73(0.13) -0.79(0.14)
TILLAGE:mulch2 -0.32 (0.19) -0.20 (0.14) -0.27 (0.14)

Errorsarlm vs. Lagsarlm

Error model:

Lambda: -0.46916 LR test value: 5.7618 p-value: 0.016379

Asymptotic standard error: 0.14247 z-value: -3.293 p-value: 0.00099118
Log likelihood: 18.17689 for error model

ML residual variance (sigma squared): 0.019354, (sigma: 0.13912)
Number of parameters estimated: 14

AIC: -8.3538, (AIC for 1m: -4.592)

Lag model:

Rho: -0.24002 LR test value: 6.1499 p-value: 0.013142

Asymptotic standard error: 0.091073 z-value: -2.6355 p-value: 0.008401
Log likelihood: 18.37094 for lag model

ML residual variance (sigma squared): 0.020609, (sigma: 0.14356)
Number of parameters estimated: 14

AIC: -8.7419, (AIC for 1m: -4.592)
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Lag: predicted (green), data (orange)
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Data minus fixed effects: What pWy'1s
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Conditional Spatial Autoregressive
Model

In CAR models, an observation’s value is conditioned on neighboring
values. This is one representation for the model:

E(yilys«i) = X0+ AW (Yui — fsi)

where
» y; = square root of Colorado pototo beetle equivalents
» X = fixed effects for y;
» y.; = neighbors of y; (xi = not including observation 1)
» )\ = autoregressive parameter
>

W (y.; — p1+i) = weighted vector of mean adjusted neighbors

Estimation results from CAR model

Estimate Std.
0.
0.080908
0.079894
0.100107
0.071309
0.071477
0.
0
0
0
0
0

(Intercept) 0.
TILLAGE 0.
PLANT.TIME.LATE 1
mulch2 0.
b.AB.west -0.
block.D 0.
b.D.west -0.
b.CD -0.
b.C.east 0.
b.AB.east 0.
PLANT.TIME.LATE:mulch2 -0.
TILLAGE:mulch2 -0.

176337
560195

.430348

079565
309661
523969
728253
427340
326350
106542
732866
210189

Lambda: -0.70764 LR test value:

Log likelihood: 17.95331

ML residual variance (sigma squared) :

AIC:

Error
056978

133909

.081758
.095643
.064655
.137060
.142252

z value Pr(s|z])
3.0948 0.0019694
6.9238 4.395e-12

17.9030 < 2.2e-16
0.7948 0.4267288

-4.3426 1.408e-05
7.3306 2.292e-13

-5.4384 5.375e-08

-5.2269 1.724e-07
3.4122 0.0006445
1.6479 0.0993820

-5.3470 8.941e-08

-1.4776 0.1395201

0.021147

5.3146 p-value:
-7.9066
0.018909,

(sigma: 0.1375

* %
* kK

* Kk k

* Kk k
* Kk k
* Kk k
* Kk k

* Kk k

* Kk k

1)
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Residuals of CAR model
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Diagnostics, SAR error model: Moman
and QQnorm plots
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Conclusions 1.

» Estimates of fixed effects parameters were similar for all models

» Standard errors of fixed effects parameters were smaller when
spatial dependencies were taken into account

» For these data, judging by AIC, the spatial dependencies
appeared to be captured adequately by all spatial models
discussed, and there is a substantial improvement over the model
that ignores spatial dependencies

» The CAR model seems to have better behaved residuals

Conclusions II.

» Why a negative correlation between neighboring plots? Our best
guess is that the beetle population is locally redistributing to
favorable plots after departing unfavorable ones. So, the relative
accumulation of beetle numbers on a particular treatment
combination depends on which neighbors it has.

» In field season 2006 we will be looking at individual beetle
behavior including arrival and residence time in different
treatments, which should yield insight into this spatial pattern.
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Spatial sampling design

B Example: a study of old-growth northern hardwood forests (Miller
et al., 2002).

m Consideration of biodiversity in natural resource management.

m Spatial patterns of forest understory vegetation (herbs, shrubs, tree
seedlings, saplings).

& Different species exhibit different spatial patterns within a given
environment?

® Biotic and abiotic factors in the environment are related to a
species’ spatial pattern?

B An important question: where should data be collected?

B The purpose is to design a sampling scheme that ensures
scientific objectivity.

Spatial Sampling Design

Zhu (University of Wisconsin)




Spatial sampling design

B Suppose the study area of interest is D.

B Suppose measurements of Z will be taken at locations
S1,82,...,8pin D, where s = (x, y) and nis the sample size.
Where should they be?

® It depends!

B Possible objectives

m Estimation of mean (e.g. average soil P in a field)

e Estimation of variogram (e.g. map of soil P in the field)

m Comparison of treatments (e.g. effect of a new fertilizer)
B Possible prior information

m Accessible study area and sampling locations

e Affordable sample size

m Condition of a study area

Zhu (University of Wisconsin)

Spatial Sampling Design

Related subjects

B Survey sampling: design-based sampling versus model-based
sampling (Gruijter and Braak, 1990; Sarndal et al., 1992)

® Design of experiment and optimal design (Mead et al., 1993)

B Spatial sampling design and optimal sampling (Webster and
Oliver, 2001)

B An excellent review article: Stein and Christien (2003)

Zhu (University of Wisconsin) Spatial Sampling Design 6/29
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Regular grids

B Triangular or isometric grid: tiling plane regularly with equilateral
triangles.

B Rectangular grid: tiling plane regularly with squares.
B Hexagonal grid: tiling plane regularly with hexagons.

Zhu (University of Wisconsin) Spatial Sampling Design 8/29
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Regular grids

Square/Rectangular

Hexagonal

d max=0.7071

d_max=0.8772

Onax = Maximum distance from any point in D to the nearest grid point.

Zhu (University of Wisconsin) Spatial Sampling Design

A plausible scenario

B The goal is to estimate the overall mean

w=E(2).

B Assume a regular spatial sampling grid with a fixed sampling
density.

B Assume an exponential semivariogram for the spatial correlation
structure.

Zhu (University of Wisconsin) Spatial Sampling Design

And the winner is...

B A triangular grid is the most efficient design with the smallest dp,x.

@ That is, for the same sampling intensity, it places the sampling
locations as far apart as possible while minimizing the area that is
under-represented.

B A triangular grid is most efficient for most bounded variograms
that have finite ranges.

Zhu (University of Wisconsin) Spatial Sampling Design

B Under some other assumptions, a hexagonal grid is the most
efficient design.

® For convenience, a rectangular grid is often the preferred design
in field work.

B Major drawbacks of a regular grid include poor variogram
estimates at short distances and the potential problems of
systematic design (as versus randomized design).

Zhu (University of Wisconsin)

Spatial Sampling Design
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Cyclic Sampling Designs
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B To compensate for poor variogram estimates using regular grid
designs, an improved method was proposed by Clayton and
Hudelson (1995).

® The main idea is to use a regular grid system, but sample at
unequal spacings.

® In one dimension (1D), the design allows the estimation of
variogram at all multiples of the smallest lag with a minimum
number of sampling locations.

Zhu (University of Wisconsin) Spatial Sampling Design 14/29

1D transect

B Let x = sample; o = skip (sampling).

B A 3/7 cyclic sampling design with 2 repeats looks like:

X X ¢} X o @] (¢] X X (¢] X o [¢] (¢]
with lag distances

x 1 - 3 - - - 7 - - - - -
X - 2 - - - B T - - - - -
- - - X - - - 4 5 - 7 - - -

Zhu (University of Wisconsin) Spatial Sampling Design

1D transect

B Choice of specific sampling pattern is important.

B Why not
X X X o ) (0] o X X X o O ) (o)
with lag distances

x 1 2 - - - - 7 - - - - -
S .
- - X - - - - 5 6 7 - - - -

B Lag distances 3 and 4 are missed.

Zhu (University of Wisconsin) Spatial Sampling Design

102




B For each lag distance, the proposed 3/7 design gives enough data
for making the confidence intervals of the variogram small.

B There are more 7-lag distances than others in a 3/7 design, which
cannot be avoided.

B Other possible cyclic sampling designs are: 4/13, 5/21, 6/31, etc.
(Clinger and Ness, 1976).

Zhu (University of Wisconsin)

Spatial Sampling Design

B Extension to a 2D region is straightforward, but only approximately
optimal.

® A 3/7 design for both the x-axis and y-axis:

X X o X o o o X X o X o o o
X X o X o o o X X o X o o o
o o o o o o o o o o o o o o
X X o X o o o X X o X o o o
o o o o o o o o o o o o o o
o o o o o o o o o o o o o o
o o o o o o o o o o o o o o

B One can have different cyclic sampling designs for rows and
columns.

B See Miller et al. (2002) for more details of the understory
vegetation example.

Zhu (University of Wisconsin) Spatial Sampling Design

Sampling design in practice

In practice, how to choose a particular cyclic sampling design and
hence the sample size?

Conduct a pilot study to obtain a rough estimate of the range, sill,
and nugget.

Simulate data on a grid with the finest grain scale possible for
sampling, based on the estimated range, sill, and nugget.

Sample from the simulated data according to different sampling
designs.

For each sample, compute the fitted range, sill, and nugget, and
the confidence intervals of the variogram.

Evaluate the effect of different designs on the confidence interval
width.

Consult a statistician!

Zhu (University of Wisconsin)

Spatial Sampling Design

Example: Nitrogen cycling

B Assume exponential variogram model with
B r =2 (i.e. 95% effective r = 6).
B r=1 (i.e. 95% effective r = 3).
B Assume a 25 x 25 grid structure at a 2-m increment.
B Compare the use of 2D 3/7 cyclic sampling design with 1, 2, or 3
repeats.

Zhu (University of Wisconsin) Spatial Sampling Design
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Design of Experiment
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® In many field experiments, blocking is used to account for
experimental unit (EU) heterogeneity, assuming that EUs within
block homogeneous.

@ Often there is spatial correlation within a block.

@ If the goal is to have equal precision for the tests of treatment
differences, it would make sense to design the experiment so that
all treatments are equally near each other.

Spatial Sampling Design

Zhu (University of Wisconsin)
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Block Treatment
1 C A B D
2 B D C A
3 A B D C
4 D B C A
Distance between plots
Contrast Block 1 Block2 Block3 Block4 Average
Avs B 1 3 1 2 1.75
AvsC 1 1 3 1 1.50
AvsD 2 2 2 3 2.25
BvsC 2 2 2 1 1.75
BvsD 1 1 1 1 1.00
CvsD 3 1 1 2 1.75
Average 1.67

Zhu (University of Wisconsin)

Spatial Sampling Design

Average distance balanced design

B Not a balanced design since some treatments are on average
closer than others.

B Simple switch in block 4 to DACB would result in much closer
average distances.

B A strategy may be to strive for an average distance balanced
design.

Zhu (University of Wisconsin) Spatial Sampling Design

Nearest neighbor approach

® Instead of distance, look at neighbors of each treatment:
AvsB:2 AvsC:3 AvsD:0
BvsC:1 BvsD:4 CvsD:2

® Similar problem as before. While switching block 4 would help, we
can do better.

B There are 12 neighbor pairs and 6 trt pairs:

Block Treatment
1 C A B D
2 B D A C
3 A D C B
4 D C B A
B Arrangement above is balanced for nearest neighbors and
distance.

B Often correlation in both directions (2D). Similar approaches apply.
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A GIS Is

¢ A computer-based system designed
for the collection, storage, and
analysis of phendmena where
geographic (spatial) location is an
important characteristic or critical to
the analysis.




Components

¢ Spatial Data
# Attributes

Vector Data

® Points

Lines

Polygons

Spatial Data

¢Landscape elements that have
physical dimensions and
geographical location. These
elements can be represented in two
different ways:

¢\ ectors
& Rasters

Vector Data

® Points

#locations of Buildings
e wood duck boxes
e water control structures




Vector Data

Lines

¢roads
sboundaries
#sStreams
epower lines

Vector Data

Overview

Vector Data

Polygons

¢lakes
#Cover types
¢timber stands

Vector Data

Overview Close-up




Raster Data Raster Data

Cells or Pixels

|
¢Landscape elements represented as
rows and columns of continuous cells

B ‘1.5' i
¢Each cell has a location Errper L r "'""-II'-
#Each cell has a value or attribute 'iff:l"
Close-up

ata
Raster Data PR e
¢ Considerations: |

Each cell is a rectangle or square of a
constant size. The size of the cells
determines the resolution of the map. As
the cell size decreases the map resolution
increases, but so does the storage
requirement in the computer.

Overview




Attributes

¢ The number of eggs in wood duck box
number 27.

¢ The level of water at Lake Sepik on 27
June 1994.

¢ The name of a road.

& The volume of red oak saw logs in
timber stand number 4.

¢ The number of black duck broods in
Hayes Flowage in 1994.

To use spatial data in a GIS
you need to know:

& Where each feature is located
Geographical Coordinates, X and Y

¢ What each feature represents

Can be any number of descriptive characteristics, but
there must be at least one.

# Relationships among features

The logic that connects the features to each other, for
example, how the location of a wood duck box relates to
the location of the nearest wetland. Topology is
internally managed by the GIS software.

How do we put it all
together?

Spatial data and
its attributes must be
arranged in a logical order
to create a GIS.

This arrangement is a series of
layers, or THEMES, each
which share a common
coordinate system.




A GIS consists of
Data Layers or Themes

species locations

+

roads

/

+

L S -r-/ land cover type

pan - 4 GIS

Typical questions include:

eWhat is at ...... ?
eWhere is ...... ?

¢What has ch'anged since ...... ?

¢ \What spatial patterns exist?
eWhat if ...... ?

The ultimate purpose of
a GIS is to answer
spatial questions...

...NOT necessarily
to make
‘PRETTY" maps!

An important thing to
remember...

The questi'ons must be
asked before the data
are developed.




GIS Software

http://esri.com/
[ESRI |

M Y http://imgs.intergraph.com/

£ Maplnfo.

http://www.mapinfo.com/location/integration

http://www.genaware.com/products/genamap/

What is ArcGIS?

#® An integrated collection of GIS software
products for building a complete GIS.
The ArcGIS framework enables you to
deploy GIS functionality—in desktops,
servers (including the Web), or mobile
devices

Who is ESRI ?

*Environmental Systems Research Institute,
Redlands, CA

http://www.esri.com/index.html

ArcGis

Why ArcGIS?

@ The defacto GIS software standard within the
FWS

Who else uses ArcGIS?

@ Most Federal & State Land Management
Agencies

@ USGS, Forest Service, NPS, BLM, FWS




Spatial Analysis
Exercises

Using ArcMap

¢ Perform simple Descriptive Statistical
Analyses

¢Conduct Complex Spatial Analyses

GRHLOPEIEROND
Edor +

lection Tools indow Help

B | oo | & [12502012 A 2| & we | @ @]

l

Remember that a GIS
spatial data (themes) a

/
Two themes are disejayed here.

£
Maine State Outline

attributes:

ivk Moosehorn NWR

.

(= = Br=)
GRHLOPEIERONS

B£

ol
ing ~

fon Tools Window Help

B oo | #|i2es o 2 &k @3] B @ @ e

This view (theme) |
shows polygons
representing the
various vegetation (.-
cover types on the A
refuge. .

Zoom in to
The Refuge
Boundary.

code the various
vegetation type
polygons.

It is perhaps more
illustrative to color .
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summarization functions can be
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User Interface options in ArcMap.
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i Tools Window Help
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l

Editor
o

The next example is to find point features
that are completely within polygon
features.

Task: Find woodcock nest locations
that are completely within aspen stands
at Moosehorn NWR.

We can display the point theme
showing woodcock nest locations.

The next step is to select the aspen
stands by the same method used to find
the under-stocked polygons earlier.

ion Tools Window Help

- = F= X | e ou | & |[172825 ol |2 &N | @ 4 &a

GRRHLOPEIEROND
Edtor ~

Using the query interface in ArcMap, we
can ask for all woodcock nests that occur
within the highlighted polygons (Aspen
stands).

lection Tools Window Help
X | e o | o |[T72828 -l 2| &N | @ 4 &a
GRHLOPEIEROND
Edior ~

Suppose we wanted to know how many
eggs hatched from these nests....

We would need to query the selected
records in the nest attribute table.
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Select By Location

Lets pou select festures fom ors of more layers based on where they are located
inelation o the fealues in another layer.
| want o

pi— =

Then select features from

the follobing layers:

mshbooy selection ~

" the wetland selection that
};a;;g;;::‘f::cz:’ . are within the distance of

I Useselette s 0 features selected)
' Apply a bulfer to the features in- raioad
of: [0.500000 Hies

0.5 miles from the railroad.

- Preview
The ted features represent the features in raiload.
The highlihied cyan fealures are selected because they
are within a distance of the red features.

el
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Now view the attribute table to get the
list of selected wetlands.
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ArciMS

®Internet Map Server

@ Provides for viewing and manipulation of
spatial data over the Internet.

|
€ Ovur office hosts an ArcIMS application for
the Bird Conservation Node of the NBII
(National Biological Information Infrastructure)

¥ The application is reachable through the
URL: http://mbirdims.fws.gov

Bird Surveys
Conservation Units

PhysicaliGeologic/Vegetal

Politicalinfrastriicture

ArclMS

& The next screen is the initial view
presented when the web site is
accessed. It shows most of North
America. The shaded areas represent
bird conservation regions. You can
click on a “View Legend” button to view
the key.

Aerial Surveys

¢ One of the major functions of our office is
to sample the breeding grounds to
estimate waterfowl populations annually.

¢ The next view shows the flight lines that
are surveyed each year in May.
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‘Refresh Map
Download GIS Data.

Retrieve Bird Data
o

Aerial Surveys
(cont’d)

& An example of survey results is shown on
the next slide.

o It shows the results of a query on Mallard
Duck abundance by survey stratum.

¢ You may have noticed that the
background has been replaced by a layer
showing land cover types.

Aerial Surveys
(cont’d)

¢ The next example illustrates the changes
in the population estimate for Mallards
from 1995 to 2000."
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Aerial Surveys
(cont’d)

# In the next view the outlines for the Mid-
Winter waterfowl survey zones have
been displayed. This is a late
December — January survey of
wintering waterfowl, primarily along the
Atlantic coast but covering inland waters
of Atlantic coastal states.

Aerial Surveys
(cont’d)

¢ The next view shows counts of Mallards
by survey unit for 2002.
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This little demonstration hardly does justice to
what can be done using a GIS to analyze data,
but hopefully it has exposed the potentials.

Waterfawl Bresding Population and
Habitat Survey

oy | But remember that yoli can’t do anything

> B Conservation Units

et e ol unless you have the data necessary to
answer the questions.

Birds Counted in Units

o We'll finish up exploring a few methods for

T getting data into a GIS.

This is a
satellite
image, 978
pixels wide
and 598
pixels high.
Points can be collected using GPS receivers. The origin,
- pixel (0,0), is

Raster data is generated by photographs or in the lower
satellite imagery. left corner.

Polygons and Lines can be digitized from maps
or other sources. Once initialized to known
reference points, digitizing software automatically
generates the correct geographic coordinates.

Next up is a simple example of using satellite In order to use this image effectively in a GIS, the
imagery as a background reference. coordinates of each pixel must be transformed to
match the other layers being used.




Overlaid with Moosehorn cover type polygon outlines




Aerial Surveys

+ In January of this year | received a request
through one of our pilot/biologists from a
biologist in Maine who was interested in some
specific data. There was concern about
some development plfns on Little John Island
off the coast of Maine east of Yarmouth. He
wondered if we could provide information
about waterfowl species and counts in the
area from the last two mid-winter waterfowl
surveys.

How to display “raw” survey data
in a meaningful manner?

+ The first thing was to create a base
layer map to define the area of interest.
Then the survey data points were
plotted and those in the area of interest

were selected using a “Select Features”
tool which allowed me to “box” the area
of interest and extract the attribute
information for the points of interest.

|
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But how was this
information actually
collected?

The next slide shows a
simulation of part of the 2005
survey flight in the selected area.

Aerial Survey Data Collection

¢ Going back to the specific area of
interest, we’ll now see the data plots
followed by an oveglay of the flight path.
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Spatial Modeling Of Counts

Outline

J. Andrew Royle
USGS Patuxent Wildlife Research Center

‘Workshop on Spatial Statistics
Beltsville Agricultural Research Center
March 16, 2006

e Introduction: Count data in ecology and spatial dependence
e Generalized Linear Modeling (GLM) framework

e Spatial correlation models

e Examples: North American BBS data

e Detection bias in animal surveys

Introduction

Introduction

Ecology: The study of spatial and temporal variation in abundance

A general theme of ecological studies: Collect spatially referenced
counts, y(s), with the goal of making inferences about “abundance”

For example,
e Characterize the spatial distribution of a population

e Map occurrence of a species — “range map”

e Evaluate landscape factors that influence variation in abundance

Data: y(s;) = y; are spatially referenced counts, e.g., number of birds counted
at site s; (a point, quadrat, transect)

Genesis of Spatial Dependence —
e Omitted habitat covariates
e Demographic processes
— Recruitment, dispersal, etc..
e Interactions between individuals/species

— Predation, competition
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Objectives

Considerations for Modeling Counts

What do we do with spatial models of abundance?
e Mapping/prediction or simple description
e Small area estimation, inference
e Shrinkage estimation of model parameters

e “Honest” estimation of covariate effects

Why not just use a kriging-type model?
e counts are positive valued
e counts are discrete

e mean related to variance (empirically)

— Route SD vs. mean, house
finch (routes > 10 years)

Route SD
4 80 80 100
P

Kriging is a linear procedure, for normally distributed data that does not
respect these features.

Generalized Linear Models (GLMs):

Elements of Generalized Linear Models (GLMs)

Classical statistics deals with normal distributions and linear models.
e y; ~ Normal(p;, o%)
o 1 = By + B,

Kriging is also a normal, linear procedure

GLMs (Generalized Linear Models) represent an analogous class of models
for non-normal data

A probability model for the observations:
o f(pi,0)
— pi = Ely;]
— @ = a variance parameter
Common choices of f for count data
— Poisson

— Binomial
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Generalized Linear Models (GLMs)

Poisson Regression

Modecling covariates cffects:
J
hElyl) = X Biij
=
instead of (for normal data)
J
E[?JJ = '21 5]'1’1']'

=

e () is called the link function (it links the mean of f(-) to the linear
function of covariates)

— Poisson: log(u;)

— Binomial: log(;/(1 — ;)

Probability model for the data:
y; ~ Poisson(p;)
i 1s the mean of y; at location s;
log(i) = Bo + B

x; = a covariate, describing landscape or habitat structure

GLMs for Spatial Data

Binomial counts

Introduce a spatially indexed random effect, z;:
J
h(pi) = '21 Bixii + 2
=

e z; is a spatially correlated random effect
e Exploit conventional Gaussian spatial process models for z; (kriging)

e Several possibilities are described shortly

If y is the number of “successes” in T" independent Bernoulli trials (“coin flips™).
then y has a binomial distribution

o 1" = sample size

e parameter m = “success probability”

Binomial data examples

— Nest success/productivity data

— Capture-recapture or band recovery data

— Occupancy data (y; units occupied out of T;)
— Harvest success
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Binomial counts

Poisson Counts

Goal: model variation in 7;

Logistic regression model:

j=

J
log(mi/(1 —m;)) = 21 BT + 2

Aggregate a Poisson point process (equal area units)
y; ~ Poisson(p;)
y; results from counting (unique) individuals in space

Goal: model variation in p;

Log-linear model:

J
log(i) = '21 BjTij + 2
iz

Spatial Models for z —

1. Classical or Direct Construction

Assume that z; = z(s;) is a Gaussian spatial process:

e z; ~ Normal
L] E[ZJ =0
2

o Var(z] =0

o Corr(z, zj) = ko(||s;i — sj|])

Joint normality of z = (z1, 29, ..., 2,):

Z,x1 ~ Normal(0, X(0))

There are a number of ways to specify 3(6)

“Kriging for counts” A direct specification of a joint distribution for the spatial
process, z($)

Specify a model for the correlation between z(s) at any two locations:
Corr(z(si), 2(s5)) = ko(lls: = s;ll)
e.g., exponential decay —
k@(S,S/> _ e*HS*s/H/H
This function ky(s, s’) “fills-in” the n x n elements of 3(6):
Z,x1 ~ Normal(0, X(6))

Estimation /prediction requires repeated mathematical operations on 33(6)
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Example: Range Mapping

Kriging for Counts

e Carolina Wren counts from the BBS
e abt. 1000 routes
e Goal is to make a relative abundance/range map

«— log(mean) route count
(across years)

3(0) is 1000 x 1000 and does not yield to kriging-like estimation and pre-
diction.

Diggle, P.J., J.A. Tawn and R.A. Moyeed. 1998. Model-based geostatistics.
Journal of the Royal Statistical Society, Ser. C.

2. Kernel Smoothing/(Process Convolution) Con-
struction

Express z(s) as a linear combination of iid “random effects”

R
£(5) = 3 wifr, o)
=
where
a(r) ~ Normal(0, o)

e wy(r, ) is a kernel centered at r
“kernel” = weighting function

e 2 an average of “noise” —
z(s) is a weighted average of 7id noise a(r;);j =1,2,..., R.

e A classical mixed model (Laird and Ware; PROC MIXED)

e R<<n

Kernel Smoothing/Convolution Construction

e Fquivalence between this method and “kriging”, i.e., a precise relationship
between the choice of wy(+) and the correlation function.

e This is morc computationally cfficient in large problems. Do not have to
operate on X(6),,x,.

e Higon, D. 1998. A process-convolution approach to modeling temperatures
in the North Atlantic Ocean. Environmental and Ecological Statistics
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Example: Range Mapping

e Carolina Wren counts from the BBS

e abt. 1000 routes

e Goal is to make a relative abundance/range map
e Method: Gaussian kernel convolution model

— log(mean) route count
(across years)

« Data locations and
grid of “support points” —
Gaussian kernel centers

Estimated spatial process:

3. Lattice models

Usually used when data have discrete or areal support. e.g., areal measure-
ments: counties, geographic strata, etc..

Conditional autoregression (CAR):

Zi=p Z WijZj + €
Jei
{w;;} = W is the adjacency matrix.
e Os and 1s indicating neighbors

e length of boundary

o “average distance” between cells
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Lattice models for non-lattice data

Example: Spatial Variation in Bobolink Counts

If data locations do not form a natural lattice, then make one up:

\ e

¢

1

o A~

T
//7
\ AN - . /L<\/ &/%A

s

log(p) = ul + Hz

o pnisn x1
e 7 is px 1 CAR process
eHisnxp

H associates each observation

~ with one or more of the p
random effects, which are ar-
ranged on a lattice

BBS Bobolink counts, arbitrary grid for embedded CAR model

e Species: Bobolink
e BBS route counts in the upper-midwest (a physiographic stratum)
e Scveral habitat covariates thought to influence abundance

e CAR model with incidence adjacency matrix

Data Locations Data
L J
100 or so routes in upper midwest
y; = count of bobolinks on BBS route 4, located at s;.
log(count)
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Predictions

Estimation and Implementation

0.96
074
052
030
0.07
-0.15
-037
-059
-0.81
-1.03
-1.25

e Markov chain Monte Carlo
geoR,geoRGLM add-on R libraries
PROC MIXED/GLIMMIX for some models

WinBUGS for all models described here

Abundance and Detectability

Abundance and Detectability

In Ecology, we have an acute inability to observe the state variable of interest
in many problems: Abundance, or occurrence

N(s) = # of animals in population s (population size)

Observe a sample count, y(s) < N(s)

Binomial Observation Model:

y(s) ~ Binomial(N(s), p)

y(s) = observed count
p = ‘“detection probability”

e Detection is important because y is a “biased estimate” of N
e p can vary in response to many factors (e.g., intensity, env. conditions)
e Variation in y is not just due to variation in N.

e But (variation in) N is the object of inference
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Simple Count Surveys (Binomial counts)

Abundance and Detection

When detection is imperfect, N(s) is not distinguishable from p (they are
confounded). For example, the model consisting of:

(1) y(s) ~ Binomial(N(s),p) and

(2) N(s) ~ Poisson(j(s))

is equivalent to the model

y(s) ~ Poisson(pu(s))

Thus, models for y(s) describe variation in the product pgu(s). This is insuf-
ficient for some important inference problems.

Therefore, much effort has been directed toward developing alternative sam-
pling protocols/methods that allow variation due to the detection process to be
decoupled from variation in abundance.

e capture-recapture

e double or multiple observer sampling

e distance sampling

e “removal” methods
Most methods yield a multivariate count statistic y that has a multinomial
sampling distribution —

y|N ~ Multinomial(N; 7)

Differences among protocols arc manifest in paramcterization of

Example of Multinomial Observation Models

The General Hierarchical Model

A double-observer protocol: Two observers independent record observations
of individuals and, after the fact, “reconcile” their observation lists. This yields
an encounter history for each individual of the form:

observed by both observers
observed by 1st

observed by 2nd

not observed

11
10
01
00

Data are encounter history frequencies—nyy, nig, no; and ngy (missing data),
which have a multinomial distribution, with cell probabilities 711, 710, 701, 700-

These are functions of detection probability p; (1st observer) and py (2nd ob-
server).

1. Multinomial Likelihood —
y|N ~ Multinomial(N; 7r)

2. Abundance model —
N; ~ Poisson(i;)

3. Model for the Poisson mean

log(pi) = x;b + 2(s;)

4. The spatial process — Spatial dependence is induced through the correlated
random effect, z(s).
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Summary

e Many ecological studies yield data that are counts: of animals, or Bernoulli
trials

e Poisson/Binomial GLMs with spatially correlated random effects
1. Kriging-type models

2. Regression-on-noise (“convolution”) formulation
3. Lattice models (CAR)
e Abundance/occurrence processes, detection bias: yields a hierarchical model

wherein the spatial model governs the latent (unobservable) abundance pa-
rameter, N(s).
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A hierarchical spatial count model
with application to
American Woodcock

Wayne Thogmartin, USGS Upper Midwest
Environmental Sciences Center

American Woodcock primary
breeding range in the United States

\ 7 e

R

H

Objective

*  Our objective is to model and map predicted woodcock relative abundance across their primary
breeding range in the United States.

American Woodcock Singing
Ground Surveys
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Survey Design

Woodcock “peenting” surveys are annually conducted on secondary roads in the upper
midwestern and northeastern United States.

Summary Statistics - Woodcock

Mean count for 9,142 surveys (space X
time) was 3.39 birds per survey (SD =
4.00)

Zero counts comprised 27% of the surveys

Median count was 2, and maximum count
was 47

1,581 observers

Spatial Poisson Count Model

Zs;) = u(s;) + (sK) - 14si)] + als;) + As)) + &s))

o Observer effects: observers count birds
differently

y Year effects: fto accommodate observed
decline in abundance

4 Environmental effects
¢ Extra-poisson variation
(Conditional AutoRegression)

Spatial Poisson Count Model

The expectation is treated as Poisson.

Because observers count birds differently (e.g., older birders have a hard time hearing some
species, novice birders have a hard time recognizing birds with unusual calls), we wish to adjust
the counts to offset the effect of observer.

We are using a time series of counts from a number of surveys. We can leverage this time series
to inform our association of counts with habitat IF we control for annual variability and any sort of
trends that may occur in the data (many birds are declining in abundance, and so it would be
‘unfair’ to compare counts from 1981 with those from 2001 if the species is in the midst of a
decline).

Environmental factors are included as a linear combination of variables derived from classified
satellite imagery. These environmental factors will form the primary basis for mapping the
predicted species abundance.

Typically, the variance of counts exceeds the mean of those counts, so we have a term to soak up
that extra-Poisson variation. This is generally not a serious issue as much of the extra-Poisson
variation is ‘structural’ in nature, i.e., because of observers, routes, or years consistently leading to
lower or higher counts than may be expected. This is adjusted for through hierarchical modeling
(described shortly).

We expect counts to be correlated over space, and so we model this correlation with a spatial 15t
order conditional autoregression.
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Hierarchical Modeling

» Bayesian: Data and prior specification used to
identify a posterior distribution for parameter
estimates (B)

— Standardized Likelihood x Data = Posterior Probability

 Hierarchical: clustering of B for observer, year,
and effects because of group correlation

» Correlation may occur because of design, over
time, and/or

Model Fitting

To fit this model, the approach we employ is described as a hierarchical model. In this workshop,
we're most interested in effects over space, but to identify those spatial effects free of the clutter of
the sample design and the temporal correlation between survey’s, we need to accommodate
nuisance effects that would otherwise obfuscate the spatial effects.

observer i Group Correlation

o

-0- » Observer variability:
Some observers will
count woodcock

similarly

fol

'of
Observers

Year i )
Time

« Temporal variability:
Some years may be
above the grand
mean, others below

Location Years

Location

Mean Counts: Spatial
Considerations




Observed Counts

An average of the point-specific time series shows that there is a general north-south gradient in
woodcock abundance. Woodcock are more abundant in the north and less abundant in the south.

This gradient results in sites near to one another being more similar than those farther from one
another.

We may wish to accommaodate this spatial correlation to reduce the bias imposed on estimation of
the slopes associated with the environmental factors. This correlation ostensibly describes

environmental factors for which we have insufficient ability to map (i.e., understory plant
composition, earthworm abundance, etc.).

Spatial Correlation:
Lattice-based Solution
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Shrinkage

Observed counts will be more variable than the mean expectation. Shrinkage or smoothing gives
a stable estimate of the pattern of the underlying expected counts, whereas the raw counts lead to
a noisy or blurred picture of the true, unobserved count process.

Conditional Autoregression

 Probability of observing a particular value
at a given site is a conditional probability,
l.e., it depends upon the values in the
surrounding neighborhood

» Advantages:

— Conservative

— High Specificity (correctly classifying
occurrences) even in sparse data situations

S thing
-
/ . _
T T T
Neighbor i Neighbor Neighbor i Neighbor

Shrinkage provides a stable estimate of the
pattern of the underlying expected counts

Mean Counts
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Smoothed

Expectation

Alternatives to 1° CAR

Euclidean Distance-based weights

1.00

» Ad hoc weighting
w=1(1°&2°),0(>2°)

/ w 0.50 7
Sourly Brr('.n(fr Root River
£ Can'mur.‘u‘i ; - 0.25 1
0.00

DISTANCE

Weights determined by degree
{1 of interaction or similarity

Crystal Cre,
£ 2

0 25 50 75 100 125 150 175 200 225

Alternatives to 1° CAR

We may wish to include not just our nearest neighbors, but also those neighbors in the
surrounding ring immediately beyond the nearest neighbors; this would be a 2d-order CAR.

We also might want to use proximity as defined by a metric other than Euclidean distance. For
instance, maybe only those points along a stream or road are considered part of the neighborhood
and given a weight of 1, whereas all others are given a weight of 0.

Others have used distance-based weightings, after having done semivariogram analyses to
identify the degree of spatial correlation. These distance weightings can be 1 for all points within
a certain distance (the range in geostatistical parlance) and 0 otherwise, or the 0-1 gradient can
be continuous and reflect the distance from the point in some linear fashion.

Regardless, symmetry needs to be observed. That is, if you are my neighbor, | am your neighbor.

Parameter Estimates for u
for Models at 3 Spatial Scales

Variable Finest Scale Medium Scale Coarsest Scale
(350 ha) (4,000 ha) (106,000 ha)

INTERCEPT 0.02(0.10) 0.07(0.11) 0.06 (0.15)
START OF SEASON -0.37 (0.17) -0.33(0.12) -0.33(0.16)
AGGREGATIONINDEX -0.29 (0.04) -0.36 (0.05) -0.26 (0.07)
HUMAN (%) -0.22 (0.04) -0.26 (0.04) -0.15(0.05)
GRASS (%) -0.01 (0.05) -0.21 (0.05) -0.14(0.07)
ASPEN (%) 0.09(0.04) 0.12(0.05) 0.20 (0.08)
TOPOCONVERGENCE 0.10 (0.04) 0.00(0.05) NA
SHRUB (%) 0.17 (0.11) 0.17(0.11) 0.12(0.14)
FOREST (%) 0.18 (0.05) 0.15(0.05) 0.09(0.05)
FOREST<FOREST(%) NA -0.01 (0.05) NA
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Environmental Factors

We modeled woodcock at three spatial scales, and used an information-theoretic approach to
averaging models within scale. We found little variability in woodcock response to the
environment across scales. Woodcock were generally negatively related to the day of the year in
which the growing season began, which may reflect the importance of earthworms to the
woodcock diet. Woodock were also negatively related to landscapes in which forest, shrub, and
field were aggregated into clumps as opposed to fine distributions among each other. The relation
of forest and aspen were positive, but the importance of forest declined with the coarsening of
scale, whereas the importance of aspen increased as the scale coarsened.

Route Random Effect

-5.0 0.0

5.0
ESTIMATE (route)

A caterpillar plot of the individual route effects, ordered by route estimate, indicates a small
number of routes reduce the expected counts relative to the predictions of the environmental
variables, whereas a number of routes increase the expected counts relative to the predictions.
These route-level reductions and increases are variability that we can not explain with the
environmental variables we have identified in the course of our model.

-4.0 2.0 0.0 20 4.0

ESTIMATE (observer)
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Observer Random Effect

Aside from a small number of observers who under- or over-counted relative to the other
observers, most observers had little effect on the overall count expectation, indicating that we
should have little concern in general for the effect of observers on surveys of woodcock.

Year Random Effect

04r

0.2

00

o
N
T

Year Random Effect

May want to address the potential cyclicity with an AR(1) (i.e., an autoregressive term of lag 1);

this may reduce the error variance around the out-years (2002 and 2003).

Predicted Woodcock
Relative Abundance

Predicted Abundance
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Mapped Predictions

The result of mapping the environmental variables and the route effect together yields a map of
predicted woodcock relative abundance.

Because we treat the counts as Poisson, we must first exponentiate the linear combination of
variables and slope estimates to map the count expectation. e(B1™X1+... +BkXk +route effect 2)

Model Evaluation

35 >
Yigs1-2001 = 0.97x . P
30 + 1981-2001 r2=080 . 2 ’
© 2002-2003 Vanoz-2003 = 0.98x .
25 r’=073 o .
(=]
L
>
oc
w
[72]
[aa]
o
0 d ST . . ‘ | | |

EXPECTED

Model Evaluation

Evaluation of the model by imputing values as determined by the final model structure (i.e., based
upon the estimated model parameters [slopes]) indicated near one-to-one correspondence
between the model predictions and the observed data for both those data withheld from model
construction and data for the two years subsequent to the modeling effort.

Predicted Woodcock
Peaks in Abundance
~ circa 1991

Focus in on
top 5% of cells

Legend e ° 4 #®
States
[] Hotspot Boundaries (Top 5% Predicted Relative Abundance) N
Smoothed AMWO Model WJ_#E
Predicted Relative Abundance s
N ———————— e 0 50100 200
E; EE B R ; ; ; ; ; ; ; —es
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Management Application

To increase the efficiency of conservation delivery, it would be best to manage the species where
our efforts would do the most good for the most individuals of the population. Unless we are led to
believe otherwise, that efficiency comes by conserving the species where it is most abundant.
Thus, we use our map of predicted abundance to focus on specific areas of high or peak
abundance.

Predicted Woodcock
Peaks in Abundance
.. circa 1991

Legend b sk P
[ Hotspot Boundaries - :
States N
Smoothed AMWO Model (Top 5% Predicted Relative Abundance) W‘%E
Predicted Relative Abundance s
CIa T T [ O T
§om 4 £ 2 L boE oS 9 100 200 400
§ =¥ e = & @ E o5 @ Miles

Management Application

There are 10 such areas. These areas are the top 5% of the distribution in the expected counts.

Regional Conservation Planning

Hotspots 1and 2 Smoothed American Woodcock (AMWO) Hotspots 1and 2

Smoothed American Woodcock (AMWO)
Model Overlayed with State Lands

Model Overlayed with Federal Lands
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Management Application

We found, from our analysis of the mapped predictions relative to the state and federal land
management agencies (i.e., “the conservation estate”), that the proportion of the population
occurring on private lands varied between 70.5% in Minnesota to 94.1% in Maine, with a grand
mean of 79.9%. The proportion of the predicted population was 7.2% on federal land and 12.9%
on state land, which was marginally higher than the proportion of the area under federal and state
management (6.4% and 11.4%, respectively).

We plotted our predictions against data layers describing the land management context with the
idea that land managers and private lands biologists can effectively direct species-specific
conservation efforts to those specific areas where the species is high in abundance. We can also
use these sorts of maps to direct research activities, to better learn why species in these areas are
highly abundant. We may also be able to use constituent aspects of the model to identify areas
where the species can be most effectively increased by simple modification of the landscape (i.e.,
if we affect certain management practices in areas where the species occurs, might we see better
bang for our buck in some areas rather than other areas; are there limiting factors that we can not
overcome regardless of our management efforts [e.g., climate (start of the growing season) can
not be managed, but only accommodated]).

Questions?

 For more information:

http://www.umesc.usqgs.gov/terrestrial/migr

atory birds/bird conservation/amwo amer

ican woodcock.html

» wthogmartin@usgs.gov
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Title Page [notes]

m The basic idea here involves a method for incorporating a
scientifically meaningful deterministic model in a more
general probabilistic framework for estimation and
prediction while accounting for uncertainty at multiple
levels.
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Invasive Species

Characteristics of Invasive Species

m Invasive: quickly spreads and becomes abundant.
m Can be naturally introduced or imported.
m Successful Invasions:

. Local Invasion
Invasive Species:

phases of a successful
invasion

Saturation

1. Pop.

Size

Introduction

2
3.) Dispersal / Growth Introduction

/

)

.) Establishment
)

4.) Saturation

Establishment

Time —>
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Invasive Species

Characteristics of Invasive Species [notes]

m The idea with this figure is that it represents growth in the
population size for an organism over time.

m The growth curve shown is very generalized, of course
there are all manner of more complex forms of population
growth. The basic idea is that after introduction, population
size grows rapidly until resources become limiting.

m As the population size approaches the carrying capacity
(i.e., saturation) other forms of dynamical behavior could
ensue (e.g., stability, periodicity, chaos).
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Invasive Species

Characteristics of Invasive Species (cont’d)

m Multiple growth curves for various locations:

populaton size

Mevin B. Hooten

Predicting the Spread of Invasive Species

University of Missouri

Introduction
[e]e]e] lele]

Invasive Species

Characteristics of Invasive Species (cont’d) [notes]

m Studying total population size is useful, but we want to
make inference about the population size at numerous
locations over time.

m These plots with multiple growth curves representing the
growth in population size at each location of interest are
informative, but it’s difficult to see the interaction between
locations (that is, the movement of organisms between
locations).

m A sequence of maps is helpful here, such as those in the
results section of this presentation.
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Invasive Species

Characteristics of Invasive Species (cont'd)

Impacts of exotic species:
m Pests can attack humans and livestock (e.g., Killer Bee).

m Cause or transmit disease (e.g., West Nile Virus and Avian
Flu).

m Disrupt native food webs (e.g., Peacock Bass and the
exotic zooplankton, Daphnia lumholtzi.
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Invasive Species

Characteristics of Invasive Species (cont’d) [notes]

m Obviously these are some of the more prominent examples
in the media.

m The point of this slide is to provide some justification for
wanting to study these processes in more detail in order to
better understand them and thus make better management
decisions.
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Eurasian Collared-Dove

History

Eurasian Collared-Dove
(ECD):

m Invaded Europe in
1930’s.

m Introduced to Florida
mid-1980’s.

m Count data collected
through N. Amer.
Breeding Bird Survey,
documenting invasion.

m Imperfect detection.
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Eurasian Collared-Dove

History [notes]

There are several good references for this species:

m Hengeveld, R. (1993) What to do about the North
American invasion by the Collared-Dove? Journal of Field
Ornithology 64:477-489.

m Romagosa, C., and R. Labisky. (2000) Establishment and
dispersal of the Eurasian Collared-Dove in Florida. Journal
of Field Ornithology 71:159-166.
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Eurasian Collared-Dove

Characteristics

m No replicate data
through BBS.

m Separate dataset used
to estimate detection
probability.

m Data for years:
1986-2003

Mevin B. Hooten
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Eurasian Collared-Dove

Characteristics [notes]

m We desire to estimate the “true” population size, that is, the
real number of birds in a given location at a given time.

m Our data represents only the “observed” number of birds.
In this type of data collection we could miss a few birds
even though they were there.

m Treating the probability of missing a bird as a parameter in
our model, we would need more than one observation to
estimate that parameter as well as the “true” population
size.

m In the case where we only have the one space-time
observation (as with the BBS data) we must estimate the
probability of detection separately.

Mevin B. Hooten University of Missouri
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Eurasian Collared-Dove

Impacts

ECD biological threats (Romagosa and Labisky 2000):

m Competition for resources with native avifauna.

m Transmission of disease.
“ECD will probably colonize all of North America within a few
decades.”

m Just how probable is it?

Mevin B. Hooten University of Missouri

Predicting the Spread of Invasive Species

Introduction

00000e

Eurasian Collared-Dove

Impacts [notes]

m One of the most important game animals in this country is
the mourning dove.

m It would not be good if the ECD causes problems for the
mourning dove.

m The goal here is to associate (determine) some level of
probability with the ongoing invasion at various locations
and times.
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Spatio-temporal Dynamical Processes

Overview

Environmental/Ecological Sciences
m Common classes of scientifically meaningful behavior.
m Often with non-linear and spatially varying dynamics.

m A hierarchical modeling framework can be employed to
accommodate such behavior.
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Spatio-temporal Dynamical Processes

Overview [notes]

m The question is: How do we make use of all of this
scientific knowledge while characterizing complex
dynamics in a rigorous statistical model?

m A hierarchical framework allows us to characterize very
complex systems by breaking the problem down into
simpler and more intuitive components.

m It also allows us to incorporate scientific knowledge (e.g.,
functional model forms and parameter spaces) into the
model.
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Spatio-temporal Dynamical Processes

Spatio-temporal Processes

Examples:

m Diffusion: Spreading process; similar to “dispersal” in
ecology.

m Growth: Process increasing in intensity; a simple form of
population growth in ecology.

m Density Dependent Growth: Process increasing in intensity
non-linearly; a more realistic form of population growth.
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Spatio-temporal Dynamical Processes

Spatio-temporal Processes [notes]

m These processes, when formulated mathematically, can be
written as Partial Differential Equations (in continous space
and time) or difference equations (in discrete space and
time).

m Difference equations can be derived as approximations to
partial differential equations.

m There are many other deterministic models capable of
exhibiting dynamical behavior (as discussed in the
methods).
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Spatio-temporal Dynamical Processes

Examples

m Diffusion: spreading

Mevin B. Hooten
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diffusion movie...
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Spatio-temporal Dynamical Processes

Examples [notes]

m The movies that are shown on the current and following
slides are only example simulations of these types of
processes to give you some idea of what they might look
like.

m Alone they appear quite simple, but in combination they
can represent more realistic invasive behavior.

m You will see from the movie in the results section, that the

behavior is a combination of both diffusion and non-linear
growth.

Mevin B. Hooten University of Missouri

Predicting the Spread of Invasive Species

Introduction

0000008000

Spatio-temporal Dynamical Processes

Examples

m Growth: increasing in
intensity

Mevin B. Hooten
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growth movie...
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Spatio-temporal Dynamical Processes

Examples [notes]

m This is a linear form of growth where the population size
increases at a constant rate in a given area.

m The differences are subtle between this movie and the next
but very important for exhibiting realistic behavior.

m In these two growth movies, the process is not spreading
out (diffusing), but rather growing independently at each
location.
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Spatio-temporal Dynamical Processes

Examples

m Density Dependent
Growth: non-linear
increase in intensity

non-linear growth movie...
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Spatio-temporal Dynamical Processes

Examples [notes]

m Again, the differences in types of growth are subtle here.

m In this movie, the growth rate slows down as a function of
intensity in the process (population size) and after reaching
a carrying capacity it ceases to grow further.
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General Statistical Framework

Definitions and Notatio

m “Population”: loosely, the true number (N) of organisms at
a place and time (also let A = mean population = E(N)).

m “Count”: the observed number (n) of organisms at a place
and time where n < N.

m Bolded variables denote vectors and matrices (e.g.,
X =[x1,..., Xm]’)-

m “|” = given; as in conditional probability.

m Square bracket notation refers to a probability distribution
(e.9., [x|3] = Prob(x|8) = £(8)).

m “~” =is distributed as . .. (e.g., x|5 ~ [x]5]).

m “x” = is proportional to . .. (e.g., [5]x] o [x|5][3])-
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General Statistical Framework

Definitions and Notation [notes

m Another way of saying: x|5 ~ fx(/3) is that x is a sample
from the probability distribution f given the parameter .

m These kind of expressions: [3|x] « [x|5][5] will be used
later to illustrate the hierarchical nature of the models.

m In this general case we may be interested in estimating the
parameter ( given the data (x). To do so, we need only
know the distribution of the data given the parameter [x| 5]
(often called the likelihood) and any prior knowledge about
the distribution of the parameter [5].
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General Statistical Framework

ierarchical Specification

m We want to characterize real environmental processes in
the presence of data.

m We have a priori scientific knowledge about the process
evolution.

m If we assume the data are a realization from such a
process, which is latent and evolves dynamically, then a
hierarchical probability model is useful:

[data|process][process]

m Our knowledge of the process contains uncertainty, so we
must learn about the process parameters as well:

[data|process][process|parameters][parameters]

Mevin B. Hooten University of Missouri
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General Statistical Framework

ierarchical

pecification [notes]

m This is just a very general representation of a hierarchical
model.

m In the specific application of modeling invasive species,
each of these components will have specific probability
distributions associated with them.
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General Statistical Framework

Hierarchical Components

m [data|process]: Specified in the usual statistical sense.
Accounts for possible observational uncertainty and/or
measurement error.

m [process|parameters]: Specified with discretized scientific
model (for computation).

m [parameters]: Specified according to a priori scientific
knowledge or lack thereof.

m [process, parameters|data]: We want to learn about the
true process given the data (via Bayes).

Mevin B. Hooten University of Missouri
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General Statistical Framework

Hierarchical Components [notes]

m These models are very data and process specific.

m Each different scientific problem (and dataset) will require
a different model specification. That is, different probability
distributions and process models.

m The specification given in the following slides is relevant to
the spatio-temporal ECD model only, though the general
framework holds for many similar problems.
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Hierarchical Matrix Model

Data Model

Methods
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Hierarchical Matrix Model

Data Model [notes]

n; ¢|Ni ¢, 6 ~ Beta-Binomial(N;,8),

where,i=1,....m,t=1,..., T, and
m n;;: sample count at location / and time t.
m N;;: Population size at location / and time t.

m 6: probability of detection parameters (assumed to be
known).

Mevin B. Hooten University of Missouri
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m Here n;; for all locations i and times ¢, are the data.

m N;; is the “true” population size and the thing we want to
estimate.

m 0 = {«, 3} are the parameters corresponding to the
probability of detection. In this case we have estimated
them using a separate model (see Royle and Dorazio
2006).

m The Beta-Binomial model is an “over-dispersed” binomial
model where the n;; is a random integer from zero to N ;.
This data model allows us to account for the uncertainty in
the probability of detection through the parameters . and

3.
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Hierarchical Matrix Model

Process Model

N;¢|Ai¢ ~ Poisson(); ;) ,for t=1,..., T,

where, A; is the mean and variance of the population size at
time t and is modeled via a latent dynamic process:

Ar=HX\ ¢,
=MGX;_{ ,for t=1,...,T,

m G =G(a, b, \) is the growth matrix.

m M = M($) is the movement (dispersal) matrix.
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Hierarchical Matrix Model

Process Model [notes]

m The Poisson model is a common model for “relative
abundance” and allows for a substantial amount of
variability in the “true” population size.

m The dynamical process model is a version of a “matrix
model”, as it is known in ecology.

m Conventionally, matrix models are used to study
demographics in population growth. Here we modify it to
study dispersal in population growth.

m Matrix Models are thoroughly discussed in:

Caswell, H. (2001) Matrix Population Models. Sinauer
Associates, Inc., Sunderland, MA.
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Hierarchical Matrix Model

Process Model (growth and dispersal)

Methods

00000e0000

Hierarchical Matrix Model

Process Model (growth and dispersal) [notes]

Growth Model:
B Ajt
G(aa ba /\i,[) - eXp{b - ? }7
Dispersal Model:

M(‘S) = [(Mi,j)]mxma
o

M,',j X exp{—T"}.
]
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m This slide illustrates how these matrices are parameterized.

m The growth model is a Ricker growth equation; one form of a non-linear
or density dependent growth equation. For further information see:

Kot, M. (2003) Elements of Mathematical Ecology. Cambridge University
Press, Cambridge, UK.

m The dispersal model is a Gaussian (i.e., Normal) dispersal kernel. That
is, it is a function that weights the dispersal of organisms from one
location to another based on the distance between them (d; ;). This is
the component of the model that allows for spatial effects.

m The parameters controlling the rate of dispersal (5;) vary by location,
allowing for organisms to move more easily in different areas. This also
allows for a heterogeneous environment.
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Hierarchical Matrix Model

Parameter Model

Probability distributions for the parameters can be specified
based on prior scientific knowledge (or lack thereof):

a~ Gamma(ag, 32)

b ~ Normal(yp,, 02)
log(6) ~ Normal(ps, X5)
log(A1) ~ Normal(py, X))
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Hierarchical Matrix Model

Parameter Model [notes]

m These prior probability distributions represent a priori
scientific knowledge about the parameters.

m They would be different for different problems of interest
and should be specified vaguely (i.e., with large varibility) if
little is known about the parameters.
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Hierarchical Matrix Model

Implementation

Methods
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Hierarchical Matrix Model

Implementation [notes]

m We want to estimate the model parameters as well as
characterize and predict the population size over time
given the data.

m Bayes theorem and various sampling methods can be
utilized to do this:

[N, A\, a, b,d|n] < [n|N, 0][N|X, a, b, d][A, a, b, d]

Mevin B. Hooten
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m So we're interested in learning about N, A\, a, b, and é given
the data (n). That is, the we want to estimate the stuff on
the left hand side of the equation (what’s known as the
posterior distribution).

m What allows us to do so is by writing the complicated joint
model as the series of simpler probability models on the
right hand side of the equation.

m We can’t find these exactly, but we can get pretty close by
taking numerous samples from these distributions and
calculating our statistics based on the samples. One such
method for sampling is called Markov Chain Monte Carlo
(MCMCQC).
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Eurasian Collared-Dove

Estimation (maps)

Posterior means for N

1986 1987 1988 1989 1990 1991

1992 1993 1994 1995 1996 1997

1998 1999 2000 2001 2002 2003
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Eurasian Collared-Dove

Estimation (maps) [notes]

m These maps show the mean of the posterior distribution for
the “true” population size.

m Notice how the invasion starts in South Florida and
spreads out as well as grows in intensity over time.

m Also notice how the population in South Florida ceases to
grow after about 2001. It has reached its carrying capacity
there.
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Eurasian Collared-Dove

Prediction (maps)

Results
008000000000

Posterior prediction means for N

EIRTETErETER

2003

2004
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2006

2007

2008

%
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37

2009

2010
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2014

19
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2015
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Eurasian Collared-Dove

Prediction (maps) [notes]

m Recall that speculation in the year 2000 suggested that the
ECD would invade most of North America within a few
decades.

m These maps provide a forecast by displaying the mean
posterior predictions for future years.

m This model provides some statistical justification for such
speculations.

Mevin B. Hooten University of Missouri

Predicting the Spread of Invasive Species

Eurasian Collared-Dove

Results
[e]e]e]e] lelele]elele]e]

Estimation and Prediction (movie)
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Eurasian Collared-Dove

Estimation and Prediction (movie) [notes]

m This movie just combines the previous two slides into a
sequence of images.
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Results
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Eurasian Collared-Dove

Eurasian Collared-Dove

Dispersal (®)

Dispersal (®) [notes]

I ‘ m This image represents the mean of the posterior
Il v distribution for the dispersal parameters (4).
m Notice how there is a pocket of low dispersal in Northern
_L‘A . Florida.
m This area of low dispersal is only marginally significant
| - (based on the variability of the posterior distribution; not
shown), but the effect of which can be seen in the previous
o movie.
m Essentially, ECDs are dispersing slower in that area than in

some others.
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Eurasian Collared-Dove Eurasian Collared-Dove

Estimation and Prediction (growth curves) Estimation and Prediction (growth curves) [notes]

95% credible intervals for N (S.Fla=red, Beltsville=black)

m These curve envelopes allow us to compare the population
growth for two locations simultaneously.

8 m For each location, the lower line represents the 2.5
o percentile of the posterior distribution for population size
and the upper represents the 97.5" percentile.

count
L

T T T T T T T
1985 1990 1995 2000 2005 2010 2015 2020
year
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Eurasian Collared-Dove

Eurasian Collared-Dove

Presence/Absence

Presence/Absence [notes]

P(N > 0) > 0.95

HHH!H! m An advantage of obtaining the output from Bayesian
models is that we can easily calculate probabilities.

1986 1987 1988 1989 1990 1991 m These maps show in red all areas where the probability of

812 presence is at least 0.95.
8‘2‘ m These can be viewed as probabilistic range maps.

1992 1993 1994 1995 1996 1997

HHH!H! B They are not to be confused with political election maps.

1998 1999 2000 2001 2002 2003
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Conclusions Conclusions

Summary Summary [notes]

In this setting, the matrix model specification accommodates:
m a priori scientific knowledge.
m Flexible dynamical behavior. m In addition, there are many extensions to this model that
can be (and were) implemented.

m These include things like: letting other parameters vary
spatially and the comparison of models with different
specifications.

m Multiple sources of uncertainty.
m Long-range predictions (assuming no population collapse).
In addition to:

m More intuitive parameterization than other models (e.g.,
partial differential equation based models).

m More accessible to ecologists and managers.
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Diagnostics for Spatial Models

Mark Otto and David Meek

U.S. Fish and Wildlife Service, Laurel, MD
U.S.Department of Agriculture—Agricultural Research Service, Ames, IA

16 March 2006

1

Box-Jenkins Iterative Modeling
Exploratory Diagnostics
Regression Diagnostic Plots
Variogram Plots of Residuals
Outlier Detection

What Diagnostics do not Cover

Box-Jenkins Iterative Modeling
Procedure

1. Identify the model: transformation, regression,
trend, correlation structure

2. Estimate model parameters

w

. Check that the model fits the assumptions
4. Repeat 1-3 until diagnostics check out

General Concepts

See that the estimated model fits the assumptions.
The usual assumption is that the residuals have a
zero mean and constant variance.

» Residuals do not show any consistent patterns

Fitted values

Regression variables
Important spatial coordinates
Time

v

v Vv vV

» Residuals are white noise: check with the
variogram of the residuals
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Stem Plots

stem(rbyc)
The decimal point is at the |
-2 | 33333333333333333333333333333333333333333333333333333333333333
-1 1
-1 1
-0 |
-0 |
0 | 000000000000000
o | 7TTTTTTITITT77
1| 11111111111144444
1 | 666666666668889999
2 | 1222222222334
2 | 55667
3|
318
410

Spinning
» Spatial data is > 3 dimensional
» Spin map to change point of view

File Edit Hnalyze Yubise Graphs Usrves ¥Yers Help

i Tz

These were done in SAS Igsight.

Brushing

» ldentify interesting points
» Link to identify in other graphs and tables

s

e
SAS: Contour Plot SASUSER. AlR

dlyze Tabies Grephs Curves Vars

Box and Normal Probability Plots

Normal Q-Q Plot
[
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1
|

H 73
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€
o - go—
- - H o _
1 H 2 7
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Theoretical Quantiles
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When the independent variables are factors the
residuals can be shown in box-plots. Here the levels
are different and the variation is much different
between the factors. This is on the original data.
The lines in the normal probability plot show the
strong correlations in the data.

Regression Diagnostics

» Studentized residuals: mean removed, standard
variance

» Influence statistics: change due to missing
observation

» Plot the above by direction, fitted value, fixed,
time

These diagnostics differ from regression diagnostic
in that they are transformed by the same linear
transformation used on the correlated residuals to
make them 11D, with L 1,

N TN
~ Diagnostics for Spatial Models Transform Correlated Errors to 11D
S . . .
Transform Correlated Errors to 11D e T R
g I—Transform Correlated Errors to 11D e e
o
[q\}

Transform the errors back to 11D, y ~ N(u, Vo?)
Transform back to independent normal, V = LL’
then

L 1(Y — XB) ~ N(0, 15?)

11

Have talked about how to define correlations in other talks
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Standardized Residuals
Cressie's Coal Ash Data

Observation — Mean

Variogram Plots of Residuals

5 » Omnidirectional classical, v(h), and robust,
. vi(h) variograms
6 » Try directional 7, (h) in two (0 and 90 deg) to
six (0, 30, ..., 150deg) depending on the
limits of the data
3 . e * - * . .
i ¥ v . » Pair count vs. h Include a reference line for
» [ ] = - ‘ ® L . . . A
H [ ] ' H . . — 2
o s i | i ' P . white noise variogram, 4 = ¢
ol : b i, 0, » Regularity test, y(h)/h* vs. h
5 - » Correlation structure, p(h) or C(h) vs. h
0 2 4 6 8 10 12 1 16
Column
12 11
amans CRESSIE'S IRON ORE DATA
g - A Variorram and Resulanity Test B. Model Development Domain and Method
S merw o m ¢ il Bk p —
oo : 60 Pratical Bule ‘ § ] 7
e ] 5 Gt DL Mol = §
.00 = - p = ” - pn - = o g] ' ] ///
o " ! o 4 g
P
o COroal . — SWEET INORETELI—S«OT T LEL EN 30 a9 // ! i
' b
T / ]
200 20 9 m ///
A e | / !
7 X - o Lol Yot =+
iji i - - - - |} Tron Ore Yanianee | 1 //.jjj 1
] it ‘ ) - ly
i P8y 2 B f b3 6 Y B F B
Colamn b, Lag Distance h, Lag Distauce
1C 12
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Iron Ore Variogram & Correlogram

2y(h) Gk
15 1.0

12 0.8

9 0.6

6 . 04

3 0.2

S ‘———.——:—fifff 0.0

h , Lag Distance

17

Model Mispecification Grid Check

» Ribeiro and Diggle (2004) suggest eye-ball
variogram parameters to fit empirical

» Suggest fitting model so residual variogram is
white-noise

10

Outliers

Two types: point (a single outlying value) and
patch (a region at a different level)
Difficult to identify with correlated data

because they don't stand out on their own. It
is how the differ from nearby values

v

v

v

Use a priori knowledge (at least use to confirm)
Can confound spatial correlation structure

v

iNn

Point Qutlier

» Set outlier detection critical value, t = 3.5
(p=0.01 controlling for an experiment-wise
error rate)

» ldentify the fixed effects and initial correlation
structure

» Estimate and fix correlation structure

» Add outlier dummy for each observation and
estimate

» Add most significant outlier to fixed effects
» Repeat 2—4 until no more significant outliers

» Reassess the fixed effects and correlation

structure
N
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Iterative Qutlier Detection

Iteration 1.
Outlier Est SE t
+ Obs4d7 2.31 0.1322 4.2 x
Obs141 1.22 0.1411 3.1
Iteration 2.
Obs47 2.37 0.1072 3.9 x*
+ Obsi141 2.07 0.1100 3.6 x*

Outlier at 47 was picked up on the first iteration
but 141 was below the critical level. The model was
re-estimated with new correlations and variance. An
outlier at 141 was then picked up. After the next
round no more observation were over the critical

vindia 1

Region Breaks

» Region a different level
» Too difficult to test every possible patch

» Use ArcGIS patch identification tool
(classification algorithm)

[ala]

Green patch identifies sole fishing area with higher
fishing and bycatch

[a)e)

What Diagnostics do not Cover

» Measurement error:
» Errors caught by repeated measurement at the
sample points
» Errors independent regression variables
» Inaccuracies in the locations and thus the measures
of distance between points
» Micro-scale variation: errors at scales below the

smallest distance increment

» Aliasing, variation at periodicities covered by
spacings in the data

» Emphasizes the importance of good design to
address the important sources of error
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Conclusions

| 2

Use the Box-Jenkins iterative modeling
approach

Use Exploratory Data Analysis stem-plots,
qqg-plots, and brushing for multi-dimensional
views of the data

Look for patterns in residual and influence
diagnostics

Check that classical and robust variograms look
like white noise and there is no anisotropy in
the residuals

Iteratively identify point outliers. Use them to
look harder at outlying values. Have a priori
reasons for including outliers and patches in the
model.

(o]~
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Introduction to Spatial Point Pattern Analysis
by

Stephen L. Rathbun
Department of Health Administration, Biostatistics, and
Epidemiology
College of Public Health
University of Georgia
Athens, GA 30605
rathbun@uga.edu

References:

Ripley, B.D. (1981). Spatial Statistics. Wiley, New York.
Diggle, P.J. (2003). Statistical Analysis of Spatial Point
Patterns, 2nd Ed. Oxford University Press, London.
Upton G.J.G., and Fingleton, B. (1985). Spatial Data
Analysis by Example. Wiley, New York.

Waller, L.A., and Gotway, C.A. (2004). Applied Spatial
Statistics for Public Health Data. Wiley, New York.

Mgaller, J., and Waagepetersen, R.P. (2004). Statistical
Inference and Simulation for Spatial Point Processes.
Chapman and Hall/CRC, Boca Raton, FL.

Definition: A spatial point pattern is comprised of the
locations of events.

L,

Figure 2. Map of All Langleal Pings in the 150 % 120 m Study Region
B (Inner Rectangla) and the 30 Meter Wide Guard Region B, — B. The
direction north is toward the right side of the page.

Callifornia Earthquakes
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Point pattern analysis is primarily concerned with modeling
the locations of events, for example the locations of:

@® Trees

@ Birds’ nests

@ Ants’ nests

@ Earthquake epicenters

@ Cancer cases

@® Galaxies

Objectives: Point Pattern Analysis

1. To determine if the point pattern is completely random:;
2. If the pattern is not completely random, fit an

explanatory point process model to the data.

Complete Spatial Randomness
Definition: A point pattern is completely random if it is
realized from a homogeneous Poisson process.
Definition: For a homgeneous Poisson process with
intensity A
1. The number of events (trees) N(A), in a study region A
is Poisson distributed with mean AlAl

Pr{N(A) = n} = #e"“A'(llAl)"

2. Conditional on the number of events (irees), the event
locations are independently sampled from a uniform
distribution on A.

Definition: The intensity 4 is equal to the mean number of

events per unit area.
Note: In ecology, the intensity is called the density. In

statistics, we use the term intensity to distinguish it from a
probability density function.

Completely Random Pattern

Comy Spatial R

Complete spatial randomness is the null model against
which spatial point patterns are often compared.

Completely Random Regular Clustered

ConpletespatialRandomness. Reguarspagng  CusterodPattem

3

In Ecology:
@ Regular spacing may result from intraspecific competition
for limited resources;
@ Clustered patterns may result from:
m Clustering of offspring around their parents;
m Response to a heterogeneous environment.
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Ripley’s K-Function
Ripley’s K-function is the most effective tool for assessing
departure from complete spatial randomness.

Definition:

Mean number of trees within distance r of an arbitrary tree

K(r) = >
Estimation:
> 1
K(r) = — wiil(di <r)
A,N ; Ly 7
where
T_ N
2 Al

is the number of trees in the study region divided by the
area of the study region.

What is this?

Consider the point pattern of trees:

Here there are 100 trees in a 10 x 10 region. So

2> _ 100  _
l_IOXIO I

10

Place a circle of radius r around an arbitrary tree:

Count the number additional of trees within the circle.

11

Repeat for each of the remaining trees:

Counting the number of additional trees within each circle.

12
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Edge Correction

For trees close to the edge of the study region, we cannot
observe the number of trees within radius r.

Here, we give the neighboring trees a weight w;; equal to
one divided by the portion of the circle of radius d;; inside
the study region.

13

The results are averaged over all base trees
~ D wyl(dy < 1)
i#f
and then divided by the estimated intensity 7 to obtain the
estimate

Ry = L wildy < 1)

i#f

14

Plot %(r) against r

Note: Under complete spatial randomness,
K(r) = nr?

15

Note: Even for strong departures from complete spatial
randomness, the difference between the empirical
K-function and its expectation under complete spatial
randomness is small.

Therefore, a plot of the K-function may not be very
informative.

Solution: Linearizing Transformation:

L(r) = m —r
@ Under complete spatial randomness
L(r)y=20
@ For clustered patterns
L(r)>0
@ For regular spacing
L(r) <0

16
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Completely Random Clustered Regular

Point Process Models
Inhomogeneous Poisson Process
Definition: The intensity of a point process is
. E{N(ds)}

As) = &églo |ds|
The intensity can be viewed as a local density. Regions
with high intensities will tend to contain large numbers of
trees, while regions with low intensities will tend to contain
few trees.

@ N(ds) is the number of trees in a small region ds surrounding
the location s

® FE{N(ds)} is the mean number of trees in ds

@ |dsl is the area of the region ds

@ Thus, the intensity A(s) is the mean number trees per unit

area, as a function of location s.
Note: By plotting the L-function against distance, all scales
of pattern can be examined.
17 18
Inhomogeneous Poisson Process Space-Varying Covariates

The inhomogeneous Poisson process may be used to Let

model the impact of spatial variation in environmental
characteristics (e.g., elevation, light intensity, nutrient
concentrations) on a point pattern.

Definition: For an inhomgeneous Poisson process with
intensity A
1. The number of events (trees) N(A), in a study region A
is Poisson distributed with mean
AA) = [ As)ds
A

That is, the probability that the number of events N(A)
equaltonis
- _ 1 - n
Pr{N(A) = n} = —re W (A(4))
2. Conditional on the number of events, the event

locations are independently sampled from a probability
density function proportional to A(s).

19

x1(8),x2(8), -+, xp(s)
denote the values of p space-varying covariates at the
location s in the study region A (e.g., elevation, light
intensity, nutrient concentrations, etc.).

The impact of these space-varying covariates on a spatial
point pattern may be modeled through the intensity
function:

A(s;B) = exp{Bo + frxi1(s) + Baxa(s) + -+ + Bpxp(s)}.
An inhomogeneous Poisson process with the above
intensity is called a modulated Poisson process.
Reference
Cox, D.R. (1972). The statistical analysis of dependencies

in point processes. In P.A.W. Lewis (ed.), Stochastic Point
Processes, pp. 55-66. New York: Wiley.

20
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Parameter Estimation

The maximum likelihood estimator is obtained by finding
that maximizes the log likelihood:

LB) =B 2 x(s) - [ exp{B'x(s)}

where

® si,s2,:+,8, denote the locations of n trees in the study region
A.

@ x(s) = vector of covariates at the location s in A.

Problem: This requires that the values of the covariates be
observed for:

@ All of the trees in the study region.
@ All locations in the study region.

The former may be impractical, and the later impossible to
obtain.

21

Two Approaches:

1. Rathbun (1996) Biometrics 52, 226-242.

2. Rathbun, Shiffman, and Gwaltney (2006) In Models for
Intensive Longitudinal Data. T.A. Walls and J.L.
Schafer (eds.). Oxford.

22
Approach 1 Example: Titi Hammock Data
@ Sample the covariates at a collection of sites Beech-Magnolia Forest in South Georgia
ul,“Za'”aum Ironwood
@® Use kriging to predict the values of the covariates at the zuc - /f - 12)5 ‘1‘?\0 - “f_‘sozw
locations of the trees, and at the unsampled sites. : s b /f / ot / \\ 5
. . . . . | " "h-._,-— 115 175
@ Substitute predicted values into the log likelihood: 3 — | ‘ ~T— T
n 50 - f I— 9= 450
~ N Z' 'l | | \_,_,--—“-\__ P
L(B) = no+ b1 Y X(s:) st s o~ T
i=1 [ ¥ '.\_5 W '\ \ //‘l' __:;‘:_‘__‘_5
1 ) 5 } e 100 L 1 \\__ //I/';,- ______\_ — = 10
~ [ exp{Bo+ pi(s) +53BH (07 ~ var(R(s)))}ds i A
\ J |- % i' . I / ] 7
Bias Correction 1 BN 5 ' — 3 -\\ // -3 ///',/”_"—“_' /Fj o
e . . N e o
@ Find B that maximizes the approximate log likelihood L(B). — b \,_, - 1.
: ", — = -
05—:_}'\_] _H"T_?\\\I\\\I/[JJ_L._LL% \I _g
0 25 50 75 100 123 150 175 200 225 250
Figure 3. Contour map of predicted elevations in Titi Hammock
23 24
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Results:

Parameter estimates for o modulated Poisson process with
intensity (5.2). Standard errors are given in parentheses.

No bias correction Bias corrected
Species Bo B Bo B
Bay —4.3729 —0.9204 —4.4300 —0.8819
(0.1355) (0.0936) (0.1330) (0.0883)
Beech ~5.4476 —-0.0613 —5.4495 —0.0609
(0.1384) (0.0262) (0.1381) (0.0261)
Blue beech -5.0711 0.1362 -5.0667 0.1355
(0.0821) (0.0113) (0.0819) (0.0113)
Holly —-5.2169 0.0161 —-5.2164 0.0160
(0.1099) (0.0183) (0.1097) (0.0182)
Ironwood —-3.2833 -0.7621 —-3.3264 —0.7384
(0.0760) (0.0432) (0.0749) (0.0415)
Magnolia —5.1454 —-0.0277 —5.1462 —-0.0276
(0.1135) (0.0203) (0.1132) (0.0202)
Tulip poplar —4.8605 —-1.0234 —4.9270 —-0.9725
(0.1750) (0.1356) (0.1717) (0.1265)

Approach 2
Data Requirements: Covariates are observed
@ Locations of the trees

SlaSZa "',Sn
@® Random locations from the study region
ula“Za "',um

Find B that maximizes the approximate log likelihood

LB) = B’ x(s1) - AL S exp(B'x(u))}
i=1 j=1

25 26
Example: Ecological Momentary Assessment of Smoking Results
Times at which cigarettes were lit by a smoker Modulate Poisson
Parameter Estimate SE
(1 1 Intercep! 005924 0.00899
; ! ; ; ! ; ! ! Negative Affect 0.01950 0.01077
e Arousal -0.01594 0.01078
, . : Attention -0.01787 0.01198
Time-Varying Covariates
® Negative Affect Restlessness ~ 0.21017 0.01577
@ Arousal
@ Attention
@ Restlessness
27 28
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Extensions:

@ Obtain covariates on a thinned sample of trees. Visit each
tree and sample the covariates with known probability p.
More generally, p may depend on location.

@ Use alternative designs for covariate sample sites:

m Stratified Random Sample
m Transect Samples - Random parallel transects, and
random sites along each transect.

29
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Example:
Spatial and Spatio-temporal
Patterns of Yellow Crinkle
Disease in Papaya

Dixon, P.M. and Esker, P.
Department of Statistics,
lowa State University

Spatial point patterns

Locations of events in space or
space X time

Goals / questions include:

— Visualizing probability of an event
— Are events clustered?

— Are events clustered with other types of events?

— In space or space x time

[llustrate using Papaya Phytoplasma data

Phytoplasmas in Papaya

e In Australia, three predominant types of
economic importance:
— Papaya dieback
— Papaya mosaic
— Papaya yellow crinkle

*Tomato big bud (TBB)
*Sweet potato little leaf V4 (SPLL-V4)

— Visual scouting for symptoms
e confirm / identify with PCR and RFLP

Notes

. Phytoplasmas: specialized bacteria lacking cell walls

—  Transmitted by sap feeding insects, e.g. leafhoppers, psyllids
—  Responsible for a variety of yellowing or wilting diseases in large number of plant species

. Identification usually by molecular methods, e.g. sequencing

181




Notes

katherine, australia . Data from papaya plantation in Northern Territory, Australia, outside Katherine Australia, 14 S, 132 E

. Location of Katherine within Australia

06 MDA EarthSat

Streaming [|1]11[1]] 1003 Eye alt 2266.47 mi

Notes

«  Photos show uninfected and two stages of phytoplasma infection.

«  Upper left photo: uninfected plants and the general layout of the plantation.
»  Middle photo: papaya with early symptoms of yellow crinkle disease.

«  Lower right photo: plant that is near death due to a phytoplasma infection.
» Infected plants remained in the plantation for this study.
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Field Study: May 1996 — April 1999

e Padovan and Gibb (2001)

* Time, incubation to death: Esker et al. (2006)
e Plantation measured: 65 x 58 = ~ 3,800 plants
e Planted: January 1996

e Monthly census of all plants (began May 1996
through April 1999)

 Plants left in plantation until plant death
(month of death then noted)

e 154 cases of V4 infection; 76 cases of TBB

Notes

Padovan, A.C. and Gibb, K. S. 2001. Epidemiology of phytoplasma diseases in papaya in Northern Australia. J.
Phytopathology 149:649-658

Esker, P.D., Gibb, K.S., Padovan, A., Dixon, P.M, and Nutter, F.W. Jr. 2006. Use of survival analysis to determine
the postincubation time-to-death of papaya due to yellow crinkle disease in Australia. Plant Disease 90:102-107.

Locations of Phytoplasma-infected trees: 1996-1999

¥ (m)
6

Locations of TBB-Infected trees: 1996-1999 Locations of V4-Infected trees: 1996-1999

Notes

These plots show locations of diseased plants. Time when symptoms first noticed is ignored.

Is there any general trend in disease incidence? E.g.:
Is disease more frequent in one part?, or on the edge?
Answers not obvious

Are locations of diseased plants clustered? l.e. are diseased trees surrounded by other diseased trees?

Hard to tell from the plots of locations. Appear to be places with many and places with few, but the eye is easily
fooled.

Even harder to tell if there is any relationship between the two types
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Disease locations and smoothed intensity

150
1

Estimate intensity (average number per m?) using a non-parametric kernel smoother
On color plot, white = highest intensity, yellow = intermediate intensity, red = lowest intensity

Black and white plot has contour lines to show the same thing.

Notes

These plots show average number; don’t look at relationships between points

Clustering is a property of sets of points.

— Clustering: neighborhood of a diseased tree is unusually likely to have another diseased tree

When set of possible diseases locations is a grid (e.g. trees in a plantation), can count distance-direction pairs:
Look at each diseased location. Count number of diseased tree with another diseased tree ‘next door’ to the east,
‘next door’ to the north, ..., two trees away to the east, ..., one north and one east, ... Use all combinations of lag

distance and direction pairs up to some maximum distance and you get the next plot.

Distance-Direction Pairs

disease pairs with 2nd at (+2.5,0)

& . Co nig 89
5o 8
80 2 %0 g °

°
@

disease pairs with 2nd at (-2.5,2)

Consider each diseased tree

:7 How many diseased trees are 2.5 m to right?
N 2 in this small part of the data

ol TS > ~N How many are 2.5m to left and 2m up?

o 3 in this small part of the data.

SeparationinY (m

10

-10

Pairs of diseased trees separated by (x,y)

17 12 13 11 19 15 7 18 15
15 15 18 12 10 6 11 12 12
9 10 8 15 11 16 13 14 17
10 15 8 18 15 16 15 5 8
16 15 19 19 16 17 15 21 12
11 9 16 18 * 18 16 9 11
12 21 15 17 16 19 19 15 16
8 5 15 16 15 18 8 15 10
17 14 13 16 11 15 8 10 9
12 12 11 6 10 12 18 15 15
15 18 7 15 19 11 13 12 17
T T T T T
-10 -5 0 5 10

Separation in X (m)
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Notes

Counts in red and blue are the full data set equivalents of the counts illustrated on previous slide

Visually, no obvious pattern to the counts.
Disease not more frequent among adjacent individuals or in one specific direction

A very simple model: Complete Spatial Randomness
— Locations of diseased trees are independent of each other (no clustering)
— Probability that a tree is diseased is constant across the study area (no trend)

Number of diseased individuals in any distance/direction count has Poisson (m) distribution
— Ignoring edges: m = n(n-1)/(t-1) n = # diseased trees, t = # trees
m = 230(229)/3769 = 13.97
P[X>20|m = 13.86] = 0.047
Should account for edge effects: fewer pairs of points separated by 5 trees than by 1 tree.
Values in bold italic are significantly larger than expected for that distance and direction

Distance / direction pairs

Consider each pair of diseased tree
Tabulate distance/direction between them

Counts larger than expected (ca. 13)
— But not unusually so

Direction doesn’t seem to matter
Consider only distance to increase power

Pairs of diseased trees separated by (x,y)

2417 12 13 1 19 15 7 18 15
15 15 18 12 10 6 1 12 12
9 10 14 17
o
10 15 5 8
E
N 16 15 21 12
=
§ oM 9 9 1
©
©
& 12 21 15 16
(2]
8 5 15 10
l.{l')_
17 14 10 9
12 12 1 6 10 12 18 15 15
2415 18 7 15 19 1 13 12 17
T T T T T
10 5 0 5 10

Separation in X (m)

Ripley’s K(t)

Ripley’s K(t) combines information across
distances, ignores direction

K(t) = E # add’n points w/i dist. t / intensity
Often easier to work with L(t) = V(K(t)/) -t
Compare K(t)to mt? or L(t)to 0
Clustering: L(t) > 0

Segregation: L(t) < 0
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Notes

E is shorthand for Expected value of. This is the theoretical average.

Estimate by counting number of points w/i distance t of each point, divide by intensity
Estimate intensity as # points / total area

Again, need to account for edge effects, details in many books and papers
Under CSR: Complete Spatial Randomness, defines a few slides ago:

K(t) =t
Lit)=0

0.6

04

0.2

0.0

-0.2

L(t) for all diseased trees

T T T
20 30 40

Distance (t)

Are diseased trees clustered?

Data: estimated L(t) > 0 from 4 — 30 m
But: L(t) estimated from 230 points. How
large is the sampling variation?

Easy to construct test of HO: K(t) = 0 at
that specific distance t.

Simulate complete spatial random
process, estimate K(t) and L(t), repeat
many times. Calculate quantiles.

Comparing L(t) to point-based simulation

Distance (m)
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Interpretation of L(t) plots

Focus on clustering, so one-sided test(s)

More diseased trees than expected within
4m, 6m, 8m, 16m, and 18m of other
diseased trees.

But, trees aren’t anywhere: on a grid

Randomly choose 230 ‘diseased’ locations
from the 3770 possible grid positions

Pairs of diseased trees separated by (x,y)

2417 12 13 11 19 15 7 18 15
15 15 18 12 10 6 11 12 12
9 10 14 17
o
10 15 5 8
E
N 16 15 21 12
=
§ oM 9 9 1
©
©
3 12 21 15 16
(2]
8 5 15 10
I.{I') -
17 14 10 9
12 12 11 6 10 12 18 15 15
o
=15 18 7 15 19 11 13 12 17
T T T T T
10 5 0 5 10

Separation in X (m)

Comparing L(t) to grid-based simulation

05
1

-05
1

10 20 30 40

Distance (m)

Notes

Same legend as slide 23:

Black line = observed L(t)

Red lines = 0.05 and 0.95 quantiles
Green lines = 0.10 and 0.90 quantiles
Blue line = median (0.5 quantile)

Lines are jagged because there are lots of trees separated by 2m, lots separated by 2.5m, lots separated by 4m
But none separated by 1.5m, or 3.5m, because of the planting grid
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Grid-based simulation

« Similar conclusions:

* More diseased trees than expected within
4m, 6m, 8m, 16m, 18m and 20m of other
diseased trees.

What about each type separately?

V4 events TBB events
T 5 q g
8P o, o8 8 °% o
- go 998%0@0 095 0 - '90% 8 e@
o8 ° & ®
0.0 0°0 8 ;N
o o%oa © o°°°°° %6 o ° % ° o
2 @y o °o§o o go® 2} ) o
o8 6 ° % ® o
° o ) 0® O
;% ° % 3 69°°°c o o °
I NI S RSN . e o %o o
0 50 100 150 0 50 100 150
0
<
1S) -
10
S =
= = °
5 o 5
o
o
0 -
<
o
- N
' o

Notes

Top pair of figures are locations of each type of phytoplasma, plotted separately
Bottom pair of figures are L(t) for each type plotted separately

Notice spread between 5% and 95% quantiles.
Much larger for TBB events (only n=76) compared to V4 events (n=154)

Can do the analysis for very small sample sizes (e.g. 30 locations), but power is very low.

Association of types

Are V4 events surrounded by (more,
fewer) TBB events?

Are there clusters of diseased trees? Or,
separate clusters of V4 and TBB?

Concerns relationships between two (or
more) processes, not the characteristics of
each process.
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Clusters of diseased trees
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Bivariate K functions

» Univariate K function: center circle on a
location, count # additional events
— 3 of these, All events. K(t)
— V4 events to themselves. Ky(t)
— TBB events to themselves. K(t)

 Bivariate K function: center circle on each
V4 location, count number of TBB points in
that circle. Kyr(t) = Kqy(t)

Notes

Estimate each univariate K(t) by considering all locations, only V4 locations or

Estimate bivariate K function by generalizing the estimate of K(t)

Because of edge effects, estimated K(t) is not the same as the estimated Ky, (t).

Kyr(t) is sometimes called the cross-K function

Two commonly used null hypotheses:

only TBB locations

Usually averaged.

Random labeling: Labels (TBB or V4) are randomly assigned to disease locations

Under random labeling: Ky (t) = K(t) = Ky (t) = K(t),

Independence: process generating TBB locations is independent of that generating V4 locations

Under independence: Ky(t) = T t?

Simulate random labeling by randomly assigning labels to observed disease locations

Simulating independence is more difficult. Toroidal rotation is one possibility

| used random labeling
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Association between types

Examine using differences of K functions

Q: Are V4 events surrounded by (more,
fewer) TBB events? Ky(t) - Kyy(t)

Q: Are TBB events surrounded by (more,
fewer) V4 events?  Kyq(t) - K(t):

Null hypothesis:

— points are randomly labeled,

— both differences = 0

V4 events are in places TBB events are not

Ktv-Kvv
100 200 300
1 1 1

0
1

-100
1

-200
1

10 20 30 40

Distance (m)

But, can't tell what's happening with TBB events

Kvt-Kitt

Distance (m)

What about aggregation in time?

Data includes the time an infection first
noticed.

So far, analyses have ignored time

Is the number of newly infected trees
constant over time?

No.
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Are space and time independent?
TBB SPLL-V4

25
50

* We have shown Spatial Aggregation
K(s) # CSR
« And Temporal Aggregation
K(t) # CTR
* But are events close in space also close in
e time?
* Expect this if disease spreads by local

Evidence that there is a non-uniform frequency of the .transfer b_y Insects. o
time when a papaya was found to be infected with either ¢ Defm? K(s,t) in term_s OT # events within
phytoplasma strain s in space and tin time

20
40

10 15
30

20

10

Space-Time “Windows” Space-time independence

@

If space and time are independent,

S~ [ K(s.1) = K(s) K(1)
- | * Measure departure from independence by
t
D, = K(s,1)—K(s)K(1) 09
o T K(9)K ()
N » D, > 0 when space-time contagion

Courtesy: Dale Tessin, Depts. EEOB and Statistics, ISU

191




Notes

D(s,t) to assess space-time independence
Division by K(s,1) is to equalize (at least approximately) the variance of K(s,t) — K(s) K(t)

depu LS wol} anpeddd

[T

\

Separation in Space

Notes

(0,0) is the forward left corner

What have we learned?

DO is >> 0 in the forward lefthand corner, that is for pairs of points close in space and close in time.

Randomization test not shown, but results are highly significant. Space and time are not independent

» Locations of diseased trees are clustered
— Don’t know whether contagion (infection) or

consequence of environmental variation
across plot

» Seem to be two processes,
— one for each type (V4 and TBB)
» Rate of new infection varies over time
» Space-time assoc. suggests contagion
— Events close in time tend to be close in space
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Additional Materials

Day-long short course on spatial point pattern analysis for ecologists on the web at:
http://www.ci.uri.edu/projects/geostats/Theory.pdf concepts and examples
—  Large bibliography, emphasizing ecological applications at the end. Not updated since 2003.

http://www.ci.uri.edu/projects/geostats/Hands-on.pdf computing using Splus (R is very similar)

My favorite text is:
Diggle, P.J. 2003. Statistical Analysis of Spatial Point Patterns, 2 ed. Arnold / Oxford Univ. Press.

120

100

80

60

40

20

Disease locations and smoothed intensity
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Spatial Statistical Software
by

Stephen L. Rathbun
Department of Health Administration, Biostatistics, and
Epidemiology
College of Public Health
University of Georgia
Athens, GA 30605
rathbun@uga.edu

General Observations:

@ Perhaps the single most limiting factor for dissemination a
modern spatial statistical procedures is the limited
availability of statistical software.

@ Writing of statistical software involves the following
trade-off:

m Ease of use
m Flexibility

2
Outline: Review software for three areas of spatial Geostatistics
statistics. South Florida Ecosystem Assessment.
1. Geostatistics. Sample Sites Predicted Total Mercury
2. Spatial Point Patterns.
3. Lattice Data.
4
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Geostatistical Software:

® SAS
® Surfer
® ArcGISG

eostatistical Analyst

@ S+SpatialStats

® R

SAS: Variogram Model Fitting

Edt ew Tods Stions Window Hep

2 drensaize- DR =S |
&[G woueay ) GRPHI WORKGSECGPLOTH 1
f Resuls Variogram TOC Data -
; " .
gt Tesosyn Variogram TOC Data
oot “he 543 System The HLIN Procsdure
Gplt: ~he 545 System
Gl Varogram TOC Date NOTE: fn intercept was not specified Var iogran
ln: Variogram TCC Data 8
ot ¥arogram T0C Date Source OF Seerce 5
Hodel 2 4926.0 2 I .
Error 16 785505 4 N
Uncorrected Total 18 5004.5 .
60
fpprox
Paraneter Estinate  Std Error
50
ce 57.2718 2.4260
alpha 11.0140 1.8824
toct.sas * PROC GPLOT running 0
title "Yeriogram T0C Datan:
Fldata toe; 2
infile "o:/projects/nsye/toz.cxct;
input x y depth toc;
Fproc variogram outvar=a: 20
puse lagd=i.9 mexlageis;
=oordinates xe=x ye=y:
ver toc: 1
Eproc alin nezhod=dud;
parameters ces60 alphass; 0
sounds ces0, alphaso; T T T T J J T J !
tenp=ce® i1-exp (-distance/alpka) ) : ¢ foow w40 50 6 o8 w0
wodel variog=temp; fverage Lag Distance for Class
_ne:gat_=count/tenp/texg:
Sutpus outsvariofi peviat;
Bpr
to 80 by 10 lzrge
£0 90 by 10 Lerge
plot (varioy vhat) *distence / ovarlay vayis=arisl hexis=arisz:
syboli v= £=special b2 i-rone colorwhlack;
spubol2 veaone L=l isspline colocshisck: i
v -
« 7

< GRAPH1 WORKGSEG.. [#]tortsas™ PROCGRLCT.

& Fesit: Elicg- wrtties) |

SAS: REML Estimation of Variogram Model Parameters

Soltions Window ey

dljo

SHSR[)ERo DUEXOS

[ Results

ol The S35 System

ot The 53 System

3 Gt The sassystam

Gt yatogeam T0C Data

ot Vogeam T0C Daka

£ Mt REML Estiatin of varioyam ian

4

=

B [outpu - (untited)

RENL Estimation of Variogran Paraneters T0C Data
09:36 Friday, F

The Mixed Procedure

Covariance Parameter Estinates

Cov Parm  Subject. Estinate
SP(EXP) Intercept  10.5939
Res idual 62.0973

Fit Statistics

-2 Res Log Likelihood 688.5
AIC (smaller is better) 692.5
AICC (snaller is better) 692.6
BIC (smaller is better) 697.8

PARMS Model Likel ihood Ratic Test
DF  Chi-Square Pr > ChiSq
1 6.77 0.0093

Solution for Fixed Effects
Standard
Effect Estinate Error

Intercept  24.9400 1.9531 o 12.77

title "REML Ectimation cf Variogrem Paraweters TOC Dara”;

4
ebruary 3, 2006

DF  tUslue Pr> it}

Edata toc;
irfile Me:/projects/usgs/tee. te';
irpuc ¥ y depth toe:
run;

Eproc mixed;

wedel toc=/zolution,
parms (57.3) [11.0!
repestsd / subject=intercert tyressp(exp] (x g);
run;

I
& Fesits 2 Explrer | B cupe- s,

[ B tso- (s i) SRAPHI WORKS5E6 G

B

SAS: Kriging

Edt Vew Toos Fun oltions Widow Heh

v

dosa(er| vda|haulsXx0&

T B foutput - ntited)
B fonls Kriging TOC Data 0
03:36 Friday, February 3, 2006

Obs  LABEL UARNAE  GNC  GYC  NPOINTS ESTIHATE  STOERR
1 PrediModell  toc 1650 108 248756 8.1033¢
2 Predl Modell  toc 1650 105 24.3898  8.01395
3 Predl Modell  toc 1650 108 2411467  £.93456
4 PrediModell  toc 1650 105 23.7410  7.61628
5 Predl Modell  toc 1650 108 2914311 7.p4524
6 Predl Modell  toc 1650 105 243745 7.93064
7 Predl Modell  toc 1650 108 2510562 8.0500C
8 Predl Modell  toc 1650 105 24.9987  8.10968
Predl Modell  toc 1675 108 24.2376  8.00554

10 I Mode 1 toc 1675 105 25,4712 7.43206
11 PrediModell  toc 1675 106 19045 4.79207
12 Predi Modell  toc 1675 108 236778 4.53158
13 Predl Hodell  toc 1675 105 195186 5.75355
14 Predi Modell  toc 1675 108 29.5225 4. 87222
15 PredlHodell  toc 1675 108 25,6304 7.6735¢
16 Predi Modell  toc 1675 108 253567 8.08229
17 PredlHodell  toc 1700 108 22,5504 7.62100
18 Predi Modell  toc 1700 108 181100 627685
19 PrediModell  toc 1700 106 33,4446 4.20674
20 Predi Modell  toc 1700 108 22.6821  4.3460
21 PrediModell  toc 1700 106 20,7628 4.65%4;
2 PrediModell  toc 1700 105 247758 4.14294
23 PrediModell  toc 1700 106 24,9732 6.84285
2 Predi Modell  toc 1700 105 29.2469  7.75484
25 PrediModell  toc 1725 108 236635  7.83955
2 Predl Modell  toc 1725 108 21,1388 6.34487
27 Predl Modell  toc 1725 105 245021 7.83314
8 011 toe 1 105 26,4173 7.5552€
2 odell  toc 1725 105 26,6542 7.2567

"Eriging 10C Dsra”;

Edata tos;
infile "c:/prejects/usys/t0z.cxt";
inprt x y depth tac;
run;

Elproc krige2d outest=tochar;
pradiet varsce;
wodel nugget=0 seale=62.0973 ranye=10.5930 formsexp:
gric x=1650 tc 1725 by 25 y=-1675 to -1500 Ly 25;
cosrdinates xe=x ye=y;

Sproc print;
run;
& Feas 2 Exporer | Boume-wumeg | Elig-prne < 5RaPHL WORK 5566 6., | [Pltoc2.sas* [P eocases

195




Comments: SAS Geostatistics
@ SAS is not menu driven. Analysis is carried out by writing
SAS programs in the SAS editor.
m For those who have experience with SAS, the
geostatistical procedures are easy to apply.
m Harder to use than menu-driven software.
@ SAS has procedures for:
m [sotropic and anisotropic variogram estimation (proc
variog);
m Variogram model fitting:
» Weighted Least Squares (proc nlin);
» Maximum Likelihood and REML (proc mixed).
m Ordinary Kriging (proc krige2d).
m Universal Kriging (proc mixed).
m  Generalized Mixed Models (proc glimmix).
@ Limitations:
m Limited choice of variogram models.
m Cannot draw good contour maps.

Surfer
http://www.goldensoftware.com/

PRy TRy ———

b

4 Pl OCH Vied DuR fegue Gi1 Mg Widss Halp
SETLERL - - T T
Dk Dy +

FORREA

o
B ua

O Tam
[TIr—
O e A

1
esremE@Ed

é‘éamm

pyopopll

M cursat salscion o bach, ol g

10

Comments: Surfer
@® Menu Driven
@ Surfer has procedures for:
m Variogram Estimation;
m Least Squares Estimation of Variogram Model
Parameters
m  Wide Variety of Variogram Models: exponential,
Gaussian, linear, log, power, quadratic, rational
quadratic, spherical, wave, pentaspherical, cubic.
m Ordinary Kriging
m Excellent mapping capabilities: contour maps; 3D
surface maps; wireframe maps; vector maps; shaded
relief maps.
@® Limitations:
m Cannot fit Matern variogram;
m  Universal kriging not available.

11

ArcGIS Geostatistical Analyst

http://www.esri.com/software/arcgis/extensions/geostatistical/index

mam v I o-o1
Bl o1-02
TR M 0.2-0.3
0.3-04 3
04-05
[ os5-06
B os-0.7

Mk
e

Chernobyl

12
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Comments: ArcGIS Geostatistical Analyst

@® Menu Driven

@ Geostatistical Analyst has procedures for:
m [sotropic and anisotropic variogram estimation;
m Least squares estimation of variogram parameters;
m  Wide variety of variogram models: circular, spherical,
tetraspherical, pentaspherical, exponential, Gaussian,
rational quadratic, hole effect, k-bessel, stable.

m Variety of kriging methods:

Ordinary kriging
Universal kriging

vvyywyy

Indicator kriging (Binary Variables)
Disjunctive kriging (Nonliner Geostatistics)

» Cokriging (Multivariate Geostatistics)
m Crossvalidation for model diagnostics.
@ Limitation: Expensive ($2,500 for Geostatistical Analyst,

Definition: Crossvalidation.

@® Remove the data at site s; from the data set;
m Use the remaining data to obtain the kriging predictor

Z_i(s;) of the data at site s;

m Compute the corresponding kriging variance ¢2,(s;)

@ Repeat the above procedure for all sites.

@ Compare observed values Z(s;) with predicted values Z_;(s;)

m Bias Measure

_ N[ 260 -Zisi)
CV1 ~n ;{ G—i(si)
m  Uncertainty Assessment
n ~ 2
1 Z(si) — Z-i(si)
CVZ “n ;{ O-—i(si)

For a valid model, we should have

$1,500 for ArcView 9.1
’ ) CV,=z0andCV, =1
13 14
S+SPATIALSTATS S+SPATIALSTATS
http://www.insightful.com/products/spatial/default.asp Ordinary Kriging Universal Kriging
Variogram Estimation Least Squares Estimation e | —
Ht . Model | Pedet | Pt |
Empirical Variogram NEER Model l Predit | Plot l Data Trend Suface
Dala I Opiions I Data Variogram Inputs Data Set: coal ash +| | Trend Tems: ;
Data Spatial Location Data Set: coal.ash «| | ™ UseValues from a Variogram Fit Vaiiable: (coal S : 12
DataSet: coalash +|| ' Location1: « - Model Variogram AEE Variable: coal | VaiogamFt  [coalvgmd  + Subset Rows with: |50 2
Variable: coal v| | Location2: v M Vanogiam Object: |coal vg.ns g| D . Subset Flows vith: |50 Variogiam ¥ e ihlisea s r!a;?:\;":::;am aVariogiam Fit
Subset Rows with: 50 [~ Corect for Geometric Anisolropy i [V Ormit Rows with Missing Values Eunclion: Spherical j' ,__s;:x:mm o [ETETE|
. o = Results g o Range: 6.5698581811728
¥ Omit Rows with Missing Values Variogram Parameters A Spatial Location aange: Location 2 [y <] Variogiam
Diecin functor el 3] S95 i Lecsiont:  [r o sk 01093983263090 I~ Conect o Geonetic Anistopy | | EPeion Sphercal 3
. . Plots Bl Location 2 y +|  Nugget 0.9174357347351 — || Benge 6570
i i Range: 6£.5636581811728 L [_ Sill: 0.109
‘Agimyth Tolerance: 01 ' PlotVariogiam Hange: - I™" Correct for Geometic Anisaiopy Resuts T A
Moasure Results Sil: 0.1093983263090 ,7 Save As: coal ordKrige ; W:
esuts
Type: vaiogiam v || SaveAs: coal vgns MNugget 0,9174357347351 ﬁ V' Erint Results Saveds [coalkige
[™ Show Variogram Resuts ¥ Piint Results
i’ E"‘_“', ﬂ, I ’l Sl ﬂ, M ﬂl 1 [ curent Help --DK Concel | _Apply f]_ ErE Help [Tk cancel | 0w | 1|o[2e2 Hep
15 16
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Comments: S+SPATIALSTATS
@® Menu Driven
@® S+SPATIALSTATS has procedures for:
m Isotropic and Anisotropic Variogram Estimation

m Least Squares Estimation of Variogram Parameters

(Weighted least squares with some work)

m Limited variogram models: Spherical, exponential,

Gaussian
m Ordinary and Universal Kriging
m  Good quality contour maps
@ Software has not been kept up to date.
m Effort has been made to improve user interface.

m No effort has been made to include modern methods.

R
http://www.r-project.org/

Geostatistical Packages
@ geoR http://www.est.ufpr.br/geoR/

Frequentist and Bayesian geostatistics.
@® geoRglm http://www.daimi.au.dk/~olefc/geoRglm/

Geostatistics for counts data. Poisson and binomial models.
@ fields http://www.image.ucar.edu/GSP/Software/Fields/

Best for global data. Includes great circle distance.

@ gstat http://www.gstat.org/

@® RandomFields
http://www?2.hsu-hh.de/schlath/R/RandomFields/RandomFields_doc.

Spatial simulation.

| =loixl
fie Hios Resbe indons Ele Hstory Resize Windows
=g EEm
EEEESSsss _iofx]= - e p
o3ects/usgs ton. X", ccl  navee=e (L, MY, *Depth?, PTCCP] E! —expand.grid(seq (1658, 1726, 1=69) , seq(-1661, -1508, 1=154) )
> to ~£0CHTOC, 106=t0c . GE 1d, KE1ge=KE1ge . COntrol (0b) . Metoc . exp. I i
T —— Krige.conv: model vith constant mean
The folloving chject(s) are masked from package:utils : .
Predicted TOC
aaca
b e =
O — \ g
> pa £="n") 26 —
Smage (ro B _gria,col=terrain.colors(16), breaks=seq(12,44, 1=17) , x1ah=" 7, ylah=" ", axes=F,1
(il The following ohject (s) are masked from package:stats :
predict
Variogram for TOC
The following object(s) are wasked from package:base :
call message
> contour (tc. krige, loc=toe. grid, Levela=seq (12, 44, by=2) , add=T)
o
% The following cbject (s) are masked from package:stata :
/r preater
S e
ST e e The following cbject(s) are masked from packageibase :
call message
> title("Predicted TOC")
>1
5]
T T T T
20 2 60 30
cistance .| I ————

198




Comments: R Lattice Data
@ Public domain software; Sudden Infant Death Rates in North Carolina
@ Packages contributed by statistical researchers keep the
software up to date;
@® Command driven and interactive;
@® GeoR has procedures for:
m Variogram estimation;
m Least squares, weighted least squares, REML estimation
of variogram parameters;
m Bayesian inference for model parameters;
m Diverse variety of variogram models including the
Matérn class;

m Ordinary, universal and Bayesian kriging. I o 00000-0.00084
@ GeoRglm has procedures for binomial and Poisson models T oo
for counts data; [ 0.00207-0.00297
. R . . . . . I 0.00298- 0.00955
@ Ficlds includes great circle distance for investigating global
data;

Limitation: Not well documented.

21
Lattice Model Software S+SPATIALSTATS
® S+SPATIALSTATS Lattice Models
@® BUGS Moran’s Index CAR Model
@ R package: spdep Spalial opossion M
Mo | Rewts |
Data Spatial Structure
Data Set. sids v| CovType CAR ¥
Weights: »| | Neighbor Object: |[sids.neighbor =
Subset Rows with: -4 Parameters: ights=1/sidsSbirth
[V Omit Rows with Missing Values Save Model Object
Spalial Corelations HEE| Saveds: sids. s
Data Spatial Structure: .
Data Set [ids 7] HeitborObiect [icsrhb3l -] VLS
Variables: bitths. <] - Dptions Dk st -
;:-ﬁnplhs Statistic: matan - Independent ;I\?lhs =
ﬁ:gnm_y; —| | Samplng Type:  [nanfree - nwbiths J
Nurm Peimute: ITEIJ— ?l’dmljlD =
;:i W Fomula: |s|dvll"nwbilhs.ll
W Pint Resuls ezl
Cancel | Apply J_ curent Heln Cancel | Apply | K >’~1ulZ Help
23
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Comments: S+SPATIALSTATS
@® Menu Driven
@® S+SPATIALSTATS has procedures for:

Defining neighborhood matrices

Defining spatial weights matrices

Computing Moran’s I

Fitting spatial regression models:
» Conditional AutoRegressive
» Simultaneous AutoRegressive
» Moving Average

25

GeoBUGS
http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/geobugs.shtml

mean SMRhat D (29)< 1000
D (12) 1000- 2000
N
(]V D (9) 2000- 3000
i (4) 3000- 4000
. (2)>= 4000

200.0km

26

Comments: GeoBUGS

@ Public domain software;
@ Bayesian inference for lattice models:

CAR models
Poisson and binomial models with spatially dependent
random effects.

@ Data interface can use some work.

27

Spatial Point Pattern
California Earthquakes

28
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Point Pattern Software: S+SPATIALSTATS

® S+SPATIALSTATS K-Function Nonparametric Intensity
. R Spatial Randomness [_[]x]
Data Khat/Lhat Options
o — 1 e L.
Location 1: % M Data Pots
Location 2: v o Data Set: lansing +| ¥ Contour Plot
Subset Rows with: |species=="maple" Location 1: % v| ¥ Filled Contour Plot
[V Omit Rows with Missing Values Location 2 ly v| [ Suface Plot
Plots Subset Rows with: species=="maple" Plot Options
v Ehat Saved Resuls ¥ OmiRows withMissngVaes | | Inckide Boits
v Ghat Saven: Intensty Optons Results :
I Knat I Fhat Method g L freplaivt
I Lha I ot Nurber of Bins 1 i flterityiomai
" Khat Nurnber of Bins 2:
r I;hag Smoothing Param: 0.25

Cancel |  Apply J_ curent Help i]% K l curent ﬂl

29 30
Comments: S+SPATIALSTATS R: Point Pattern Packages:
@® Menu Driven; @ spastat http://www.spatstat.org/
@® S+SPATIALSTATS has procedures for: Analysis of spatial point patterns.
m Computing F-, G- and K-functions; @ splancs http://www.maths.lancs.ac.uk/~rowlings/Splancs/

m Testing complete spatial randomness;
m  Nonparametric estimation of the intensity function;
m Fitting the point cluster process model.

Analysis of spatial and spatiotemporal point pattersn.
@® MarkedPointProcess
http://www?2.hsu-hh.de/schlath/schlather.html#Software

Analysis of marked point patterns.

31 32

201




R: spastat

fie Edt Msc Backages Windows Help

EEEEEREE
: 5

spatstat 1.8-5
Type "help(spatstat)” for information
> load("C:/Projects/USGS/pattern.RData”)

> 1s()

[1] "clust” "esr” "kelust” "kpoi”

[5] "kreg" "lambda.csr”  "lolust” "lestn

[9] "lhat.csr™ "lhat.sim.clust” "lhat.sim.csc” "lhat.sim.reg"
[13] "lreg” pit "rn "reg”

[17] Muclust" g "zero”

> longleaf<-read.table("c:/classes/spastat/spp/ longleaf.txt”,col. nawes=c ("x", "y", "dbh") )
> window<-owin (xrange=c (0,200}, yrange=c (0,200))

> coords<-as.matrix(longleaf[,c(1:2)])

> pines<-as.ppp (coords, window)

> pines.khat<-Kest (pines,correction="Ripley")

> 1hat<-sqrt (pines.khat§iso/pi)-pines.khatir ©
> lambda<-nrow(longleaf) /area.owin (vwindow)
> lhat.sim<-1hat.csr (399, lanbda, window)

> lhat<-lhat[1:200]

> dist<-pines.khat§r[1:200] Al
> plot (dist, Lhat, yLin=c(-Z, 6] ,xlab="r", ylah="L (r) "]

> lines(dist, lhat.sindlsin$lover, lty=2)

> lines(dist, lhat.sin§lsinfupper, lty=2)

- R Graphics: Device 2 (ACFIVE)

Longleaf Pines, L-function

E w4
> lines(dist,zero, lty=1) - o
> title("Longleaf Pines, L-function") °
>1 = 4o
o 4
i} 1y =

!

| |
IEZ.Z.I-Angmg;denv‘lmm 4|
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Comments: R
@ Public domain software;
@ Packages contributed by statistical researchers keep the
software up to date;
@® Command driven and interactive;
@ Spastat has procedures for:
m  Computing F-, G- and K-functions;
Testing complete spatial randomness;
Fitting the point cluster process model;
Simulating a variety of point process models;
Estimating parameters of modulated Poisson process
model (covariates must be observed at all locations).

34

General Summary
@ ArcGIS Geostatistical Analyst:
m Menu driven;
m A comprehensive collection of geostatistical methods;
m Expensive.
® R:
m Up-to-date methods for geostatistical and point pattern
analyses;
m Public domain;
m Command driven and interactive.
@® S+SPATIALSTATS:
m Best for analysis of lattice data;
= Menu driven.

35
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Combining multi-scale spatial
data

Prepared for the

Workshop on Spatial Statistics
For Agricultural and Environmental Applications

by

Mark West
USDA/ARS/NPA

Combining spatial data from different sources is a common problem and poses a real
challenge. (Gotway C.A. 2002) provides an overview of the most recent approaches and
progress made towards combining incompatible spatial data. What is covered in this
presentation is narrowly focused on available geostatistical approaches which are
challenging enough. By illustrating a few examples, my aim is to introduce basic
concepts and terminology used in geostatisitical analysis and expose the limitations of
these methods.

Gotway C.A., Y. L. J. (2002). "Combining Incompatible Spatial Data." Journal of the
American Statistical Association 97(458): 632-648(17).

What are multi-scale data?

multiple sources

collected from the same region using
different formats and scales

each source (layer) may have one or more
attributes (weed infestation, percent bare
ground)

sources may have different levels of
accuracy and precision

Multi-scale data may include different formats such as points, lines,
polygons and grids. Edzer Pabesma (Pebesma 2004) has developed the sp
and the gstat packages with R code for analyzing different types of spatial
data.

(Zhu, Morgan et al. 2004) combine soil coring, penetrometer, and other
topographic data to produce a fine map of depth-to-till for a Wisconson
field. The data collected using these methods have different resolutions and
accuracies. Soil coring provides accurate information on depth-to-till but
because of its expense requires this information to be collected sparingly and
hence results in a low resolution map of a field. Soil electroconductivity
(EC) can provide information on depth-to-till and is easy to collect hence its
resolution will be finer than the information collected from soil coring but
has the problem of being less accurate with more error. The soil core and
soil EC are multi-scale data.

Pebesma, E. J. (2004). "Multivariable geostatistics in S: the gstat package."
Computers & Geosciences 30(7): 683.

Zhu,J., C. L. S. Morgan, et al. (2004). "Combined mapping of soil
properties using a multi-scale tree-structured spatial model." Geoderma
118(34): 321.
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Layers, Resolution & Accuracy

resolution accuracy
course high

'

fine low

This slide was used to visually support the concept that resolution and accuracy aren’t
necessarily one in the same. Certainly we want to create maps that have fine resolution
and are accurate. However, data that are easier to collect for providing finer maps are
easierbecause the methodology used to collect them is quick, inexpensive and prone to

error.

General Problem

* Inference at the level of one layer may be
desired using information gathered from
other levels

* Question may be “How do soil attributes
measured at point locations relate to weed
infestation measured on rectangular
units?”

(Gotway 2002) gives several examples where data is on one scale but inference is desired
at another. Individual level inference is wanted but because of privacy issues data is only
available at some aggregate level. Data from Standard Metropolitan Statistical areas may
be available but information at the county level may be needed.

Gotway, C. A. w. Young, L.J. (2002). "Combining Incompatible Spatial Data." Journal of
the American Statistical Association 97(458): 632-648(17).
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Focus

Use topographic and soil attributes to
predict crop yield
Predict at aggregate levels
Mapping applications
Use available geostatistical (kriging)
methods
— R programs

» Packages (Edzer Pabesma, 2005)

—gstat

The focus of this presentation is to examine a few geostatistical methods (mainly kriging
systems) that involve problems with combining misaligned spatial data. Definitions of
terms related to the problems will also be given.

My intention is to provide information of available tools that can be used to krige data.
These are available for free from the R Development Core Team (2005) . All of the
kriging systems were fitted using the gstat package (Pebesma 2004) . There is a variety
of example code for fitting similar systems in the gstat package. You need to download
the package and once downloaded refer to the directory

C:\Program Files\R\R-2.2.1\library\gstat\demo for example code. I found these scripts
very helpful.

Pebesma, E. J. (2004). "Multivariable geostatistics in S: the gstat package." Computers &
Geosciences 30(7): 683.

R Development Core Team (2005). R: A language and environment for
statistical computing. R Foundation for Statistical Computing,
Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org

Example 1: Field scale study
relating elevation to yield

Models were fit that use elevation
to predict spatial crop yield values.
(Green & Erskine, 2004)

Can elevation help predict yield
for large plots (blocks) in the field?

(Green 2004) addresses quantification of spatial variability of crop yield and soil water at
farm scales using geostatistical and fractal analyses. His data are used in this example to
demonstrate kriging methods for predicting wheat yield at the particular Nothern
Colorado farm.

Timothy R. Green, R. H. Erskine. (2004). "Measurement, scaling, and topographic
analyses of spatial crop yield and soil water content." Hydrological Processes 18(8):
1447-1465.
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Yield and elevation maps

wheat yield (bu/acre)

..

[0.072,27 06]
27.06,54.09]
54.05,81.09]

. E
k. K3 + (3105108]
Y% 4&,” + (108,135]
£ R

.
-

elevation (meters)

1361,1365]
1365,1369]
1369,1373]
1373,1378]
1378,1382]

Yield data (Green 2004) was collected from a field of roughly 800 square meters area
using a combine mounted with a calibrated monitoring device to measure yield in bushels
per acre. A GPS system was used to mark the 6701 points on the field where yield was
recorded. Each yield value represents around 10 square meters of area. Because of
various factors (e.g. the combine will not move at a regular speed) the actual area
represented at each point will vary and yield values can be expected to be quite noisy.

Elevation data was collected over the same area using an all terrain vehicle. These data
were interpolated to a regular grid of 5 meter spacing. These interpolated values of
elevation should be very accurate representing small deviations from the true elevation (~
0.05 m).

Yield and elevation maps were generated using the sp (Pebesma 2005)
package in R.. See ‘wheat yield and elevation plots.R’ in the wheat folder on the ftp site.

Green, T. R., Erskine, Robert H. (2004). "Measurement, scaling, and topographic
analyses of spatial crop yield and soil water content." Hydrological Processes 18(8):
1447-1465.

Pebesma, E. J., Bivand, Roger S. (2005). S Classes and Methods for Spatial Data:the sp
Package.

Example 2: Precision
agriculture

Soil electroconductivity (EC)
mapping to explain yield variability
for a center pivot cropping system
in Northern Colorado.

Can EC help predict yield for large
blocks in the center pivot system?

The Water Management Research Unit in Fort Collins develops irrigation, agricultural
chemical, and other management practices that protect water quality for all Americans
while improving the husbandry of natural resources and the irrigator's economic viability.
Research covers precision farming with center pivot sprinklers, remote sensing, and weed
management for reduced applications of chemicals.

The data given here was collected in 1999 for relating various soil properties with soil
electroconductivity (EC). Yield data was collected in 1999. Each point roughly represents
around 11 to 12 sq. meters (the swath length is 20 ft.; the distance between points is
around 6 ft).
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Yield and electroconductivity (EC)
maps

corn yield (bu/acre)
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This data is similar the wheat and elevation data. The data given here was collected in
1999 for relating various soil properties with soil electroconductivity (EC). Yield values
represent around 11 to 12 sq. meters. The EC data are measured can be expected to be
much noisier than the elevation data.

Yield and EC maps were generated using the sp (Pebesma 2005)
package in R.. See ‘corn yield and EC plots.R’ in the corn folder on the ftp site.

Pebesma, E. J., Bivand, Roger S. (2005). S Classes and Methods for Spatial Data:the sp
Package.

Methods

« Aggregation
» Change of Support (COSP)
 Kriging
— Point Kriging
— Cokriging models
— Block kriging
» Spatial joins

Methods used to combine multi-scale spatial data include aggregation, various kriging
methods and those that involve what is referred to as a change of support (block kriging).
‘We may be interested in changing from a point system to a system of blocks, from a
system of blocks to a system of points., or from a system of blocks to another system of
blocks.

207




Aggregation —
averaging over point values to form
areal units

point data 40 x 40 m” grid 80 x 80 m” grid

50% reduction in variance T1% reduction in variance

It is a well-known fact of statistics that averaging reduces variance. The apparent spatial
variation also changes with aggregation.

Support of data

section of yield-elevation map
illustrating support of elevation and yield
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This slide is provided to point out data can be recorded at points but may have areal
support. The yield data in both examples are geo-referenced at points but because the
grain collected by the combine is collected over a region it represents yield over some
small area (around 10 square meters for the wheat yield and around 11 square meters for
the corn yield).
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Why Aggregation?

» Prediction: prediction is wanted at larger
scales

 Different support: aggregation
transforms a variable from point support to
areal support.

« Smoothing: aggregation smoothes out
noise to detect trends

It isn’t uncommon where data is collected at one scale and inference is desired at another.
Making inferences on block averages whose support is different from those of the data is
called a change of support problem. (Isaaks and Srivastava 1989) give an example of a
mining operation where data are collected at points but mining operations involve only
large blocks of material extracted from the mine. Having only point data on hand the
problem here is to estimate the distribution of the average tonnage of ore contained in
blocks. To estimate this sampled point data need to be aggregated to the size of blocks
and the distribution of values associated with blocks may then be used to base decisions.
By aggregation we mean obtaining a weighted average. To estimate the average tonnage
of ore Z; for ablock B we need to come up with an estimate based on sampled values
Z,in the neighborhood of block. The estimator 25 = Z‘K‘Z‘ is derived by choosing
weights A, that account for the spatial variation in the Z, and the estimated spatial

variation occurring on the block scale. Spatial variation for the change of support
problem is modeled through a variogram y(h) of the Z;.

Isaaks, E. H. and R. M. Srivastava (1989). Applied geostatistics. New York, Oxford
University Press.

Support effect

distributions of points vs grid cell means
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The support effect is the change of distribution of statistics that results when data are
aggregated. Quoting from (Gotway 2002), ‘Changing the support of a variable (typically
by averaging or aggregating) creates a new variable. This new variable is related to the
original one, but has different statistical and spatial properties,”

Gotway, C. A. w. Y., L.J.) (2002). "Combining Incompatible Spatial Data." Journal of
the American Statistical Association 97(458): 632-648(17).
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Scale Problem
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The effect of the change of support realized by increasing the areas for which aggregation
is performed is called the scale effect. The differences in the statistical properties of the
variograms are obvious with scale changes for both examples.

Problems of Aggregation

» Change of support problem (COSP)

—How can spatial variation at the point
support scale be used to estimate
spatial variation at an aggregate scale?

—COSP modeled through variogram

—Similar to using population variance to
form inferences using sample means.

2 2 2
Gy_>6y=6y/n

Making inferences on block averages whose support is different from those of the data is
called a change of support problem. (Isaaks and Srivastava 1989) give an example of a
mining operation where data are collected at points but mining operations involve only
large blocks of material extracted from the mine. Having only sampled point data
available a big problem is to estimate the distribution of the average tonnage of ore
contained in blocks.

Isaaks, E. H. and R. M. Srivastava (1989). Applied geostatistics. New York, Oxford
University Press.
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Aggregation Methods

+ Generic : weighted average of values Z; for
estimating average for an area B of size |B|

Zy=Y%Z, Y Ay =1

» Arithmetic means: simple averages
(A =1/n, n=sample size) ignore spatial
structure

« Kriging: averages use weights XBi derived
from spatial structure y(h) - variogram

By aggregation we mean obtaining a weighted average. To estimate the average Zg of a
variable Z for a block B we need to come up with a weighted average Z; = Z‘XB‘Z‘
based on sampled values Z;in the block neighborhood. Later more detail will be given
when the method of block kriging is described.

Some Notation

« S = point where an observation is
made

« Z(S) = value of observation at S
« 0(S) = error from mean value at S
« L =mean value at for any S

» l(s)= mean value that depends on

location S and/or predictors at S

Notation added to clarify expressions to follow.
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Ordinary and Universal Kriging

Ordinary Kriging
—Model: zs) = u+3(s)

* Universal Kriging
—Model: zs)= w(s)+(s)

* Predictor: z(s)=>_ A, -z(s)

ith
I

— A, weight of i value, derived from variogram of §(S)

and/or predictors

Kriging is a method of spatial prediction. The predictors are in the form of a weighted
averageZ = Z‘ A, -Z, . The differences in these two kriging methods are their underlying

models.

For ordinary kriging, the underlying model for the Z is a constant mean plus error where
errors are spatially autocorrelated. The spatial autocorrelation of errors doesn’t depend on
location. The A, are derived using the model assumptions to give the minimum mean-
squared prediction error. For ordinary kriging, the A, are a function of the variogram

y(h) that describes the autocorrelation of errors.

For universal kriging, the underlying model for the Z is a mean that depends on location
and/or other predictor variables plus error where the errors are spatially autocorrelated.
Again, the spatial autocorrelation of errors doesn’t depend on location. For universal
kriging, the A, are a function of the variogram y(h) that describes the autocorrelation of
errors and the predictors that are modeling the mean.

Cokriging

« Simultaneously krige two or more
variables
Z(s)=)_ A Zs) + 2 ;- X(u)

Z(s,) yield at locations s,

X(u;) EC at locations u,

» Not only requires fitting of variograms for
each variable but also requires fitting of
the cross-variogram for each pair of
variables

Cokriging is a method originating from the need for predicting a primary variable Z that
is undersampled (because it may be expensive to sample) but another secondary variable
X isavailable that is related to Z and more heavily sampled (because X it is less
expensive/difficult to sample). Both X(S) and Z(S) are fitted to a model simultaneously.
This is a form of multivariate prediction modeling. The estimator for an unknown Z is of
the form Z= Z‘X‘ “Z+ ZJ(»J-XJ . The usefulness of the secondary variable for

predicting the primary variable is enhanced when the primary is undersampled. See
(Isaaks and Srivastava 1989) for a more complete description.

Isaaks, E. H. and R. M. Srivastava (1989). Applied geostatistics. New York, Oxford
University Press.
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Block Kriging

estimate the mean value of an attribute for a local

area B using points in the neighborhood of B
used with either ordinary, universal or cokriging
variogram is adjusted to handle the scale effect

estimator: 2(B)=Zi)\3i.z(si) ~ ﬁ_[BZ(s)ds

Block kriging is an aggregation method for estimating or predicting an average value

25 over an area B. The estimator 25 = Z‘XB‘Z‘ is derived by choosing weights KB‘ that
account for the spatial autocorrelation in the Z; and the estimated spatial autocorrelation
occurring on the block scale. Therefore we need to know how the autocorrelation among
units on the point scale changes to autocorrelation among units on the block scale. Spatial
variation for the change of support problem is modeled through a variogram y(h) of the
Z, (Cressie 1993) describes the needed calculations to modify the point support
variogram Y(h)to the block support variogram y(B) (pages 124-125,) for block kriging
(aggregation over an area B).

Cressie, N. A. C. (1993). Statistics for spatial data. New York, J. Wiley.

Spatial Join of datasets

Combine two or more datasets with different attributes
measured at different locations by translating them to
same location.

Problems

— Trans-locating  errors in variables problem
— Ad Hoc approach, descriptive purposes
Benefits

— plotting techniques reveal relationships and needed
transformations for other more legitimate methods

— attributes can be studied together

Data measured at different locations can be joined many different ways. Consider two
geostatistical datasets A and B each with different attributes. One approach would be to
conduct a search of points in dataset B for each data point in dataset A. The attribute
values corresponding to the points in B nearest in distance to those in A are joined with
those of A. Another approach would be to lay a grid over the intersection of the areas
from which datasets are formed. For each point in the grid, a search is conducted to find
the points in A and in B that are closest and these two are joined. Yet another way would
be to spatially interpolate all the points in B to those in A. Many Geographic Information
Systems provide software for joining misaligned data but the capabilities of the software
is limited to descriptive purposes.

See joindata.R for an R program that quickly joins two datasets.
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Scatterplots of spatially joined data

wheat data coth data
Lo -
‘When kriging methods involve predictors, they are linear functions of the predictors.
= Spatial joins were used to construct scatterplots to study the relationships between yield
] and predictors to find transformations that ensure linearity. In both cases, suitable
= ™ R transformations were found.
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A spatial join may be used to see if
relationships are stationary

Correlation Map for log(EC) and Yield r
oy 10
! Using spatially joined data from the center pivot example, Pearson’s correlation
L 08 coefficient was used as a ‘moving-window’ statistic. A 12x12 m grid was overlaid on the
center-pivot area. For each point on the resulting grid, all points in the spatially joined
After Creating a Spatial join dataset within a 100 m radius were selected and the correlation coefficient was computed,
—t 06 s ! and then mapped.
Pearson’s r was calculated
oa as a moving WindOW (Carroll and Oliver 2005) give details of this technique in their study of EC and soil
i T . properties.
— statistic to consider how
. . Carroll, Z. L. and M. A. Oliver (2005). "Exploring the spatial relations between soil
02 the relatlonShlp between physical properties and apparent electrical conductivity." Geoderma 128(3-4): 354.
— EC and YIELD may
oo change throughout the
region
— 1 -0z
—t 04

range of r at each point = 100 meters
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Attribute characteristics

» Wheat Yield / Elevation
— Response: Yield

— Predictor: Elevation, measured with little
error

— location: measured at different locations
 CornYield/EC

— Response: Yield

— Predictor: EC, measured with a lot of error

— location: measured at different locations

Before looking at the specific problems for using elevation or EC to help predict yield
using kriging methods, this slide is given to motivate why different approaches for
predicting yield are taken

For the wheat yield data, elevation has so little error associated with it that it is practical
to treat these values as being static. There will be little error incurred by interpolating
elevation values to points where wheat yield is observed. Doing this we act as if both
yield and elevation are measured at the same points in the field. I view this problem as a
univariate regression problem where the predictor, elevation, is known for any point in
the field

For the corn yield data, soil EC has a lot of error associated with it to begin with.
Interpolating EC value to points where corn yield is observed will add more error. For
practical as well as illustrative reasons corn yield and soil EC joined to the same points
for analysis. I view this problem differently in that it lends itself to a cokriging
application.

Suggested approach using
elevation to help predict yield

 Universal Kriging

— interpolate values of the elevation to locations
where yield is recorded

— use elevation as a predictor

Using the example datasets, two approaches are considered for incorporating the
predictor variables with kriging methods.

For the wheat yield example, universal kriging will seems to be a reasonable approach for
predicting yield using the model Z(S)=u(S)+p- X(S)+8(S) where
Z(S)=log(VYield) atlocation S, u(S)is the mean value of log(Yield) at location S,
X(8) = interpolated value of log(Yield) atlocation S and &(S) is the error at

location S. Although elevation is not observed at the same locations as yield,
interpolating elevation to those points where yield is measured should incur little
error.

For the corn yield example, universal cokriging will be used on the basis that a
reasonable model for predicting yield is Z(S) = ws)+ §(S) where Z(S) represents the
bivariate values of both yield and EC at location S, E(S) represents the mean of the

bivariate values at location S and §(S) represents the bivariate errors at location S.
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Predicting corn yield
Can EC help prediction?
« Hold out thirty 40 x 40 m? grid cells for
comparison of prediction methods

» Use remaining data to fit prediction models;
ordinary kriging, universal kriging, and
universal cokriging

« Block krige yield to 40 x 40 m? grid using
each method & obtain standard errors

Steps used to compare kriging methods for the corn yield data are similar to that of the
wheat yield only yield data and EC data weren’t spatially joined.

The usefulness of universal cokriging for predicting blocks of unsampled plots was tested

by holding out a set of thirty randomly selected 40 x 40 m2 blocks, predicting their

average values and comparing them back to the actual means for those blocks. For
comparison purposes, ordinary kriging and universal kriging using locations were
included. Using each kriging method, yield was block kriged to predict average values

for the 40 x 40 m2 held out blocks. The abilities of these methods for prediction were

evaluated by comparing 1. Standard errors of the estimates were also compared.

The spatial autocorrelation structure of the errors for the model was fitted to Gausian
variogram models. For universal kriging, residuals were obtained by fitting a trend
surface of yield over the field. The residuals were then used to obtain an empirical
variogram. The empirical variogram was fitted to a Gaussian variogram model by least
squares.

Kriging approach using EC to help
predict yield values on blocks

» Cokriging
— Simultaneously krige both yield and EC

— Fit linear model of coregionalization (LMC)

+ a method for fitting variograms for yield and EC
and the cross-covariogram of EC and yield

Z(s;) yield at locations s,

Z(s,)=)_ A -2(s,) + Zj(x)j -X(u;)

X(u;) predictor at locations u;

I chose to explore the ability of cokriging yield and EC because I felt this to be a
reasonable application to cokriging. I felt this to be a more reasonable application than
cokriging yield and elevation since the error in elevation was expected to be very small.
A linear model of coregionalization was used to fit the variograms and cross-variogram
for yield and EC. The method is described in (Isaaks and Srivastava 1989) and as a word
of warning can be quite an undertaking.

Isaaks, E. H. and R. M. Srivastava (1989). Applied geostatistics. New York, Oxford
University Press.
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Fitted cross-variogram for cokriging

ield

Validation Sites

sites for validation
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Compare methods

OK: Ordinary kriging

LMC: cokriging with linear model of
coregionalization

UK: Universal kriging

True Mean: Observed average yield

To follow methods of prediction, abbreviations are made. Kriging methods compared for
predicting the thirty held out plots in the field are; OK — ordinary kriging; UK —
universal kriging using locations as predictors; LMC — universal cokriging of yield and
EC using a method of fitting a cross-covariogram called linear model of
coregionalization; truemean — is used to denote the actual sample average observed for
the held out plots. See (Isaaks and Srivastava 1989) for details of the linear model of
coregionalization.

Compare predictions

corn yield predictions for holdout cells
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The scatterplot matrix is used to make comparisons among the predictions for the means
of the holdout plots. Each of the methods compared are weighted averages of values at
points in the neighborhood of the plot being estimated. All of the estimates agree well
with the true sample averages for the plots being estimated. 7 is calculated by squaring
the correlation coefficient computed between the true sample average for each of the
thirty holdout plots and the corresponding prediction values obtained by each method:
OK - ordinary kriging; UK — universal kriging using locations as predictors; LMC —
universal cokriging of yield and EC using a method of fitting a cross-covariogram called
linear model of coregionalization .See (Isaaks and Srivastava 1989) for further details.
Based on the 1, there appears to be some increased ability of prediction over ordinary
kriging using the universal and cokriging methods. However, this may be due to the
search region of points used for making the predictions.
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Compare standard errors of
methods used

comparison of standard errors of prediction
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Ordering the methods from largest to smallest on the basis of size of standard errors,
ordinary kriging is showing the largest standard errors, then the next largest is for
universal kriging and the smallest is for universal cokriging. Intuition would lead you to
think this would be the order relation for these standard errors. The more information
used would lead to more precise estimates. However, I am wary of these estimates
because of the personal choices I made in the fitting of the variograms used for
developing these universal kriging predictors. As a check I computed approximate 95%
confidence intervals by calculating estimate +/- 2 standard errors, and found the
proportion of intervals that cover the true means to be 3% with the LMC. An adjustment
to the variogram estimates brought this coverage up to 100% with the standard errors still
smaller than those for the ordinary kriging method.

Summary

kriging is spatial prediction tool that uses weighted averages

— weights depend on autocorrelation structure

— explanatory variables may adjust the weights for a more accurate

prediction - cokriging or universal kriging

cokriging and universal kriging are ways to incorporate multi-scale
data

aggregation methods compared here give similar predictions but
some accuracy and precision may improve with predictors

block kriging is a useful scaling tool
joining misaligned spatial data may be useful as a
exploratory/descriptive tool

examples given involve heavily sampled spatial regions— with less
heavily sampled data a predictor may have bigger impact

focus was on geostatistical methods, newer Bayesian methods
namely tree-structured hierachical models may be more effective
(Zhu 2004, 2005)

To summarize, geostatistical methods covered here mostly revolve around mapping
applications. Although difficult, different sources of data can be combined to improve
mapping accuracy and precision.

219




Thank You
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R? as a goodness of fit statistic for mixed
models

Matt Kramer
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Biometrical Consulting Service, ARS/BARC/USDA

Outline

Introduction
(Desirable) properties of 12

>

>

» Philosophies for extension into mixed models

» R? estimates for examples of mixed models data
>

Conclusion

Introduction

» R?is often quoted as a measure of goodness of fit, typically as
the proportion of variance in the dependent variable that is
explained by the model

» Itis natural to ask how R? changes when adding random effects
or spatially correlated residuals

» Current packages don’t provide an R? statistic for an estimated
mixed model

(Desirable) properties of R?

Kvélseth (1985, Am. Statistician 39, 279-285) proposed the following
requirements for R?

» 1. R? must possess utility as a measure of goodness of fit and
have an intuitively reasonable interpretation

2. R? ought to be dimensionless

\4

3.0 < R? <1, where R? = 1 corresponds to perfect fit, and
R? > 0 for any reasonable model specification

\4

4. Applicable to (a) any type of model, (b) whether effects are
fixed or random, and (c) regardless of the statistical properties of
the model variables

» 5. R2 should not be confined to any specific model-fitting
technique

\4
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(Desirable) properties of R?

» 6. Values for different models fit to the same data set are directly
comparable

» 7. Generally compatible with other acceptable measures of fit
» 8. Positive and negative residuals weighted equally

(Desirable) properties of R?

Under the usual regression model, various definitions yield the same
numeric result, e.g.,

1=y —9)?/ Xy —9)?

X0 -9 Xy —9)°

(05 — Ui‘z)/ai

1> (e—2)?/> (y —¥)? e is a model residual

Squared multiple correlation coefficient between the regressand
and the regressors

vyvy VYVY

v

Squared correlation coefficient between y and 3

Different definitions of R? may yield different quantities when the
usual regression model is generalized

v

(Desirable) properties of R?

Cameron and Windmeijer (1996, JBES 14, 209-220), to extend the
definition to count data, suggest

» .0<R?2<1
» 2. R? does not decrease as regressors are added

» 3. R? based on residual SS coincides with R? based on explained
SS

» 4. There is a correspondence between R2 and a significance test
on all slope parameters and between changes in R? as
regressors are added and significance tests

» 5. R? has an interpretation in terms of information content of the
data

Philosophies for extension into mixed
models

Philosophy 1: R? is a measure of between variable effects and should
be free of contamination of within variable effects (e.g., autocorrelation
due to repeated measures or geographic proximity), otherwise part of
the variance of y is explainable by its own past or its neighbors.

Pierce (1979, JASA 74: 901-910) suggests the following form:

R: = (0}, — 02, )75, where y, denotes past or neighboring .
This is similar to the expression for R?, (o} —07,,)/0;, except that we
are now also conditioning on ...
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Philosophies for extension into mixed
models

Philosophy 2: How much better than the mean is a model that predicts
y when conditioned on the set of x variables and on past and
neighboring values of y?

Magee (1990, Am. Statistician 44: 250-253) suggests developing

general R? measures based on Wald and likelihood ratio test statistics.

Wald R?

Wald test: Buse (1973, Am. Statistician 27: 106—108) modifies R? as
1_ a'V-la _

Y -Y)YVvi(y -Y)
correlated residuals), V' is the variance-covariance matrix of the
residuals, and Y = 71.

where s =Y — Y (i.e. the spatially

The inverse of V' “undoes” the correlation between residuals.

One problem, we don’t have V', we only have an estimate of it, and it
may not be a very good estimate.

A second problem is that software packages don’t have this expression
pre-programmed, to calculate this R? would require some work.

Log-likelihood function for a two panm.

model (mean and variance)

100 normally distributed samples were generated (1 = 0.5, 02 = 0.025)
and the log-likelihood function plotted for /i = [0, 1] and 62 = [0.05, 2]

Log likelihood R?

Likelihood ratio: 17 , = 1 — exp(—2 (logL,, — logLy)), where n is the
number of observations, logL,, is the log-likelihood of the model of
interest, and logL, is the log-likelihood of the intercept-only model.

What is the log-likelihood? The log-likelihood of a statistical model is a
function of the data collected and the parameters of the model; the
form of this model is assumed known.

It is a special function, the value of the log-likelihood function increases
as we reduce the difference between the data and our model for them
(we change the value of the log-likelihood function by varying the
parameters of the model).

The maximum log-likelihood occurs at those parameter values where
this difference is minimized.
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Philosophies for extension into mixed
models

R? based on the likelihood ratio test possesses many desirable
properties for a goodness-of-fit statistic
» produces the usual R? for ordinary regression (like others)

» since it is based on likelihoods, there is a direct relationship with
Kullback-Liebler distance, “information”, and information gain
IG = —log(1 — R% ) (note that IG is not a linear function of k% ;)
(see Kent (1983), Biometrika 70: 163—-174)

» it is easily calculated using output from mixed models software

R? examples

Ex. 1: RCBD + covariate (random coefficients, 3 treatments, 4 blocks,
2 obs/block-trt combination, 03 =4, 03 =1, 04,5, =0, 0% =1)

blk 1 blk 2 blk 3 blk 4
A|B B|C B|C B|A
ClA B|A AlC c|C
B|C A|C A|B A|B

R? examples

Ex. 1: RCBD + covariate (random coefficients, 3 treatments, 4 blocks,
2 obs/block-trt combination, 03 =4, 03 =1, 04,5, =0, 0% = 1)

block 1 block 2
w w
> o e NP AP
A o
? o ° ?
A o o
T T T T T T T T T T
-2 -1 0 2 -2 -1 0 2
covariate covariate
block 3 block 4
A
w o w
° o
A
> o A >o-am
° Y4
(o] (o]
[} [}
T T T T T T T T T T
-2 -1 0 1 2 -2 -1 0 1 2

covariate covariate

R? examples

R program used for simulating data and estimating the maximum log
likelihood (with nmle package by Bates and Pinheiro)

model parms log likelihood R2Z,. R%,
intercept only 2 -64.45 0 0
trt 4 -63.55 0.07 0.07
trt + cov (f) 5 -59.10 0.36 0.36
trt + blk (r) 5 -60.60 0.27 0.32
trt + blk (r) + cov (r) 7 -42.74 0.84 0.93

f = fixed

r = random
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Spatial exponential correlation

Ex. 2: p = exp(—d; ;/2), 0? = 1, level effect = 2, d = distance between

R? examples

Example 2: Semi-variograms

iand j
24 o °, o Level 0 Level 1
gp 0 ® . 8o o o ° N N °
. 4 oos® © 08 0% - o -
circle = level 0 A eet® oo oo& 0%% 4 . . 0 %o 00
. - 7 o ° @ ° ° @ 3
diamond = level 1 % o -ooo%’ . ® oo 51 e T oee o £ o ve, 00
o o 3 a ° [— <
° 0do g 4
. < o % o 0%5 ® oooo ° ° £« ° £
topograhic colors F | b 0 90, °% & % 87 o 87 ¢
. o — 4
(blue = lowest values, light L | 5, ° g°%° o ° °
— hi 5 ° o ° ° © 24 2
brown = highest values) Zeq L oo > o . . . . . . . T T . . .
4 o 08 o o ? 0 2 4 6 8 10 0 2 4 6 8 10
oo‘o 04 [N ° °® 2P ° < distance distance
o
o o ° oF g, ° ‘o0
N1 oe 2 o, ° o
o © - 9% oo % . o
o6 © <§>o° PPN °
3 o °
N P o g% %o o o
T T T T T
0 2 4 6 10
East - West
R? examples Conclusi
p onclusions

model log likelihood  RZ
intercept only -495.94 0

level -389.68 0.51
level + corr. resid. -225.27 0.67

» there are various R?'s that can be developed for mixed models, all
produce the same value for ordinary regression

» an R? based on the likelihood ratio test is easy to calculate from
standard mixed models output and has a connection to

information theory

» examples were shown demonstrating increases in R when
adding random effects or correlated errors to the model
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